2 resultados para Single-gene
em Bucknell University Digital Commons - Pensilvania - USA
Developmental Brain Dysfunction: Revival and Expansion of Old Concepts Based on New Genetic Evidence
Resumo:
Neurodevelopmental disorders can be caused by many different genetic abnormalities that are individually rare but collectively common. Specific genetic causes, including certain copy number variants and single-gene mutations, are shared among disorders that are thought to be clinically distinct. This evidence of variability in the clinical manifestations of individual genetic variants and sharing of genetic causes among clinically distinct brain disorders is consistent with the concept of developmental brain dysfunction, a term we use to describe the abnormal brain function underlying a group of neurodevelopmental and neuropsychiatric disorders and to encompass a subset of various clinical diagnoses. Although many pathogenic genetic variants are currently thought to be variably penetrant, we hypothesise that when disorders encompassed by developmental brain dysfunction are considered as a group, the penetrance will approach 100%. The penetrance is also predicted to approach 100% when the phenotype being considered is a specific trait, such as intelligence or autistic-like social impairment, and the trait could be assessed using a continuous, quantitative measure to compare probands with non-carrier family members rather than a qualitative, dichotomous trait and comparing probands with the healthy population. Copyright 2013 Elsevier Ltd. All rights reserved.
Resumo:
Recent research has provided evidence of a link between behavioral measures of social cognition (SC) and neural and genetic correlates. Differences in face processing and variations in the oxytocin receptor (OXTR) gene have been associated with SC deficits and autism spectrum disorder (ASD) traits. Much work has examined the qualitative differences between those with ASD and typically developing (TD) individuals, but very little has been done to quantify the natural variation in ASD-like traits in the typical population. The present study examines this variation in TD children using a multidimensional perspective involving behavior assessment, neural electroencephalogram (EEG) testing, and OXTR genotyping. Children completed a series of neurocognitive assessments, provided saliva samples for sequencing, and completed a face processing task while connected to an EEG. No clear pattern emerged for EEG covariates or genotypes for individual OXTR single nucleotide polymorphisms (SNPs). However, SNPs rs2254298 and rs53576 consistently interacted such that the AG/GG allele combination of these SNPs was associated with poorer performance on neurocognitive measures. These results suggest that neither SNP in isolation is risk-conferring, but rather that the combination of rs2254298(A/G) and rs53576(G/G) confers a deleterious effect on SC across several neurocognitive measures. Copyright 2014. Published by Elsevier Ltd.