3 resultados para Single cell proteins
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Carotenoid-based sexual ornaments are hypothesized to be reliable signals of male quality, based on an allocation trade-off between the use of carotenoids as pigments and their use in antioxidant defence against reactive oxygen species. Carotenoids appear to be poor antioxidants in vivo, however, and it is not clear whether variation in ornament expression is correlated with measures of oxidative stress (OXS) under natural conditions. We used single-cell gel electrophoresis to assay oxidative damage to erythrocyte DNA in the common yellowthroat (Geothlypis trichas), a sexually dichromatic warbler in which sexual selection favours components of the males’ yellow ‘bib’. We found that the level of DNA damage sustained by males predicted their overwinter survivorship and was reflected in the quality of their plumage. Males with brighter yellow bibs showed lower levels of DNA damage, both during the year the plumage was sampled (such that yellow brightness signalled current OXS) and during the previous year (such that yellow brightness signalled past OXS). We suggest that carotenoid-based ornaments can convey information about OXS to prospective mates and that further work exploring the proximate mechanism(s) linking OXS to coloration is warranted.
Resumo:
The fundamental problem of developmental biology is how a single cell- a fertilized egg- is able to produce an entire organism in all its complexity. One essential aspect of this process is spatial patterning-in essence, instructing cells as to their location in developing body so that they can exhibit characteristics appropriate to their functions. he Hox genes, first discovered in mutant fruit fly "hopeful monsters" with extra pairs of wings or legs growing out of their heads, confer spatial information along the anteroposterior axis in animals from worms to humans. Prof Marin's research focuses on the roles of specific Hox genes in sculpting the developing entral nervous system of the fruit fly and how the same gene can direct a neuron to die, survive, or send its axon in search of different connections, depending on cellular context.
Resumo:
Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellae Ray 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans. (C) 2014 Elsevier GmbH. All rights reserved.