7 resultados para Signal conditioning circuits
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
We describe a recent offering of a linear systems and signal processing course for third-year electrical and computer engineering students. This course is a pre-requisite for our first digital signal processing course. Students have traditionally viewed linear systems courses as mathematical and extremely difficult. Without compromising the rigor of the required concepts, we strived to make the course fun, with application-based hands-on laboratory projects. These projects can be modified easily to meet specific instructors' preferences. © 2011 IEEE.(17 refs)
Resumo:
The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)
Digital signal processing and digital system design using discrete cosine transform [student course]
Resumo:
The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.
Resumo:
In the past few decades, integrated circuits have become a major part of everyday life. Every circuit that is created needs to be tested for faults so faulty circuits are not sent to end-users. The creation of these tests is time consuming, costly and difficult to perform on larger circuits. This research presents a novel method for fault detection and test pattern reduction in integrated circuitry under test. By leveraging the FPGA's reconfigurability and parallel processing capabilities, a speed up in fault detection can be achieved over previous computer simulation techniques. This work presents the following contributions to the field of Stuck-At-Fault detection: We present a new method for inserting faults into a circuit net list. Given any circuit netlist, our tool can insert multiplexers into a circuit at correct internal nodes to aid in fault emulation on reconfigurable hardware. We present a parallel method of fault emulation. The benefit of the FPGA is not only its ability to implement any circuit, but its ability to process data in parallel. This research utilizes this to create a more efficient emulation method that implements numerous copies of the same circuit in the FPGA. A new method to organize the most efficient faults. Most methods for determinin the minimum number of inputs to cover the most faults require sophisticated softwareprograms that use heuristics. By utilizing hardware, this research is able to process data faster and use a simpler method for an efficient way of minimizing inputs.
Performance Tuning Non-Uniform Sampling for Sensitivity Enhancement of Signal-Limited Biological NMR
Resumo:
Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform incrementation of the indirect evolution period. Theory and experiments have shown that NUS can yield up to two-fold improvements in the intrinsic signal-to-noise ratio (SNR) of each dimension, while even conservative protocols can yield 20-40 % improvements in the intrinsic SNR of NMR data. Applications of biological NMR that can benefit from these improvements are emerging, and in this work we develop some practical aspects of applying NUS nD-NMR to studies that approach the traditional detection limit of nD-NMR spectroscopy. Conditions for obtaining high NUS sensitivity enhancements are considered here in the context of enabling H-1,N-15-HSQC experiments on natural abundance protein samples and H-1,C-13-HMBC experiments on a challenging natural product. Through systematic studies we arrive at more precise guidelines to contrast sensitivity enhancements with reduced line shape constraints, and report an alternative sampling density based on a quarter-wave sinusoidal distribution that returns the highest fidelity we have seen to date in line shapes obtained by maximum entropy processing of non-uniformly sampled data.
Resumo:
The signal-to-noise ratio of a monoexponentially decaying signal exhibits a maximum at an evolution time of approximately 1.26 T-2. It has previously been thought that there is no closed-form solution to express this maximum. We report in this note that this maximum can be represented in a specific, analytical closed form in terms of the negative real branch of an inverse function known as the Lambert W function. The Lambert function is finding increasing use in the solution of problems in a variety of areas in the physical sciences. (C) 2014 Wiley Periodicals, Inc.