4 resultados para Shell model formalism

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that ‘‘lotic’’ shell shapes are weaker than ‘‘lentic’’ shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. ‘‘Lotic’’ shell shapes produced significantly higher stresses than ‘‘lentic’’ shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate ΔH° and ΔG° values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4+(NH3)n and NH4+(H2O)n, where n = 1−4, are reported in this paper and compared against experimental values. Agreement with the experimental values for ΔH° and ΔG° for formation of NH4+(NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4+(H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the mechanical implications of shell shape differences between males and females of two North American turtle species: Chrysemys picta and Glyptemys insculpta. These species show patterns of sexual dimorphism that are common to many species of turtle. Females have wider and more highly domed shells, whereas males tend to have flatter, more streamlined shells. In addition, the males of many terrestrial species have concave plastra, most likely to accommodate the domed shells of the females while mating. The purpose of this study was to determine whether the known morphological differences in male and female turtle shells are also associated with differences in shell strength. Landmark coordinate data were collected from the shells of males and females of both species. These data were used to create digital models of each shell for finite-element (FE) analysis. FE models were generated by transforming a single base model of a turtle shell to match the shapes of each specimen examined in this study. All models were assigned the same material properties and restraints. Twelve load cases, each representing a predator’s bite at a different location on the carapace, were applied separately to the models. Subsequently, Von Mises stresses were extracted for each element of each model. Overall, the shells of females of both species exhibited significantly lower maximum and average stresses for a given load than those of their male counterparts. Male G. insculpta exhibited significant increases in stresses because of the concave shape of their plastra. We suggest that the mechanical implications of shell shape differences between males and females may have a large impact on many aspects of the biology of these turtle species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of Komendant's design of the Kimbell Art Museum was carried out in order to determine the effectiveness of the ring beams, edge beams and prestressing in the shells of the roof system. Finite element analysis was not available to Komendant or other engineers of the time to aid them in the design and analysis. Thus, the use of this tool helped to form a new perspective on the Kimbell Art Museum and analyze the engineer's work. In order to carry out the finite element analysis of Kimbell Art Museum, ADINA finite element analysis software was utilized. Eight finite element models (FEM-1 through FEM-8) of increasing complexity were created. The results of the most realistic model, FEM-8, which included ring beams, edge beams and prestressing, were compared to Komendant's calculations. The maximum deflection at the crown of the mid-span surface of -0.1739 in. in FEM-8 was found to be larger than Komendant's deflection in the design documents before the loss in prestressing force (-0.152 in.) but smaller than his prediction after the loss in prestressing force (-0.3814 in.). Komendant predicted a larger longitudinal stress of -903 psi at the crown (vs. -797 psi in FEM-8) and 37 psi at the edge (vs. -347 psi in FEM-8). Considering the strength of concrete of 5000 psi, the difference in results is not significant. From the analysis it was determined that both FEM-5, which included prestressing and fixed rings, and FEM-8 can be successfully and effectively implemented in practice. Prestressing was used in both models and thus served as the main contribution to efficiency. FEM-5 showed that ring and edge beams can be avoided, however an architect might find them more aesthetically appropriate than rigid walls.