8 resultados para Shale gas

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper utilizes a Contingent Valuation Method survey of a random sample of residents to estimate that households are willing to pay an average of $12.00 per month for public projects designed to improve river access and $10.46 per month for additional safety measures that would eliminate risks to local watersheds from drilling for natural gas from underground shale formations. These estimates can be compared to the costs of providing each of these two amenities to help foster the formation of efficient policy decisions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study estimates the economic effects of a severance tax on the market for natural gas produced from shale sources using non-conventional extraction methods, such as horizontal drilling and fracking. Results suggest that a severance tax of 5% would increase the price of natural gas by as much as 3.82% and decrease gas extraction by an estimated 1.16% to a value of 9.52%. If applied to the Commonwealth of Pennsylvania in the United States, a 5% severance tax is estimated to raise between US$443 and $486 million per year in public revenue. The marginal deadweight loss associated with a 5% severance tax is estimated between 1.27% and 12.85% of the last dollar earned. The burden of this tax falls on both producers and consumers and depends upon the underlying assumptions made regarding the price responsiveness of consumers and producers. Under plausible assumptions, a family consuming 1000 MMcfs (approximate to 2.8 x 10(4) m(3)) per year of natural gas is estimated to pay an additional $100 per year after the implementation of a 5% severance tax.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using survey and interview data gathered from educators and educational administrators, we investigate school and community impacts of unconventional gas extraction within Pennsylvania's Marcellus Shale region. Respondents in areas with high levels of drilling are significantly more likely to perceive the effects of local economic gains, but also report increased inequality, heightened vulnerability of disadvantaged community members, and pronounced strains on local infrastructure. As community stakeholders in positions of local leadership, school leaders in areas experiencing Marcellus Shale natural gas extraction often face multiple decision-making dilemmas. These dilemmas occur in the context of incomplete information and rapid, unpredictable community change involving the emergence of both new opportunities and new insecurities.