2 resultados para Sequence Homology, Amino Acid

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In protein sequence classification, identification of the sequence motifs or n-grams that can precisely discriminate between classes is a more interesting scientific question than the classification itself. A number of classification methods aim at accurate classification but fail to explain which sequence features indeed contribute to the accuracy. We hypothesize that sequences in lower denominations (n-grams) can be used to explore the sequence landscape and to identify class-specific motifs that discriminate between classes during classification. Discriminative n-grams are short peptide sequences that are highly frequent in one class but are either minimally present or absent in other classes. In this study, we present a new substitution-based scoring function for identifying discriminative n-grams that are highly specific to a class. Results: We present a scoring function based on discriminative n-grams that can effectively discriminate between classes. The scoring function, initially, harvests the entire set of 4- to 8-grams from the protein sequences of different classes in the dataset. Similar n-grams of the same size are combined to form new n-grams, where the similarity is defined by positive amino acid substitution scores in the BLOSUM62 matrix. Substitution has resulted in a large increase in the number of discriminatory n-grams harvested. Due to the unbalanced nature of the dataset, the frequencies of the n-grams are normalized using a dampening factor, which gives more weightage to the n-grams that appear in fewer classes and vice-versa. After the n-grams are normalized, the scoring function identifies discriminative 4- to 8-grams for each class that are frequent enough to be above a selection threshold. By mapping these discriminative n-grams back to the protein sequences, we obtained contiguous n-grams that represent short class-specific motifs in protein sequences. Our method fared well compared to an existing motif finding method known as Wordspy. We have validated our enriched set of class-specific motifs against the functionally important motifs obtained from the NLSdb, Prosite and ELM databases. We demonstrate that this method is very generic; thus can be widely applied to detect class-specific motifs in many protein sequence classification tasks. Conclusion: The proposed scoring function and methodology is able to identify class-specific motifs using discriminative n-grams derived from the protein sequences. The implementation of amino acid substitution scores for similarity detection, and the dampening factor to normalize the unbalanced datasets have significant effect on the performance of the scoring function. Our multipronged validation tests demonstrate that this method can detect class-specific motifs from a wide variety of protein sequence classes with a potential application to detecting proteome-specific motifs of different organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With a virus such as Human Immunodeficiency Virus (HIV) that has infected millions of people worldwide, and with many unaware that they are infected, it becomes vital to understand how the virus works and how it functions at the molecular level. Because there currently is no vaccine and no way to eradicate the virus from an infected person, any information about how the virus interacts with its host greatly increases the chances of understanding how HIV works and brings scientists one step closer to being able to combat such a destructive virus. Thousands of HIV viruses have been sequenced and are available in many online databases for public use. Attributes that are linked to each sequence include the viral load within the host and how sick the patient is currently. Being able to predict the stage of infection for someone is a valuable resource, as it could potentially aid in treatment options and proper medication use. Our approach of analyzing region-specific amino acid composition for select genes has been able to predict patient disease state up to an accuracy of 85.4%. Moreover, we output a set of classification rules based on the sequence that may prove useful for diagnosing the expected clinical outcome of the infected patient.