2 resultados para Sensory-motor learning

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally thought that macronutrients stimulate intake when sensed in the mouth (e.g., sweet taste) but as food enters the GI tract its effects become inhibitory, triggering satiation processes leading to meal termination. Here we report experiments extending recent work (see [1]) showing that under some circumstances nutrients sensed in the gut produce a positive feedback effect, immediately promoting continued intake. In one experiment, rats with intragastric (IG) catheters were accustomed to consuming novel flavors in saccharin daily while receiving water infused IG (5 ml/15 min). The very first time glucose (16% w/w) was infused IG instead of water, intake accelerated within 6 mins of infusion onset and total intake increased 29% over baseline. Experiment 2 replicated this stimulatory effect with glucose infusion but not fructose nor maltodextrin. Experiment 3 showed the immediate intake stimulation is specific to the flavor accompanying the glucose infusion. Rats were accustomed to flavored saccharin being removed and replaced with the same or a different flavor. When glucose infusion accompanied the first bottle, intake from the second bottle was stimulated only when it contained the same flavor, not when the flavor switched. Thus we confirm not only that glucose sensed postingestively can have a rapid, positive feedback effect ('appetition' as opposed to 'satiation') but that it is sensory-specific, promoting continued intake of a recently encountered flavor. This sensory specific motivation may represent an additional psychobiological influence on meal size, and further, has implications for the mechanisms of learned flavor-nutrient associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the hypothesis that excess saturated fat consumption during pregnancy, lactation, and/or postweaning alters the expression of genes mediating hippocampal synaptic efficacy and impairs spatial learning and memory in adulthood. Dams were fed control chow or a diet high in saturated fat before mating, during pregnancy, and into lactation. Offspring were weaned to either standard chow or a diet high in saturated fat. The Morris Water Maze was used to evaluate spatial learning and memory. Open field testing was used to evaluate motor activity. Hippocampal gene expression in adult males was measured using RT-PCR and ELISA. Offspring from high fat-fed dams took longer, swam farther, and faster to try and find the hidden platform during the 5-day learning period. Control offspring consuming standard chow spent the most time in memory quadrant during the probe test. Offspring from high fat-fed dams consuming excess saturated fat spent the least. The levels of mRNA and protein for brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein were significantly decreased by maternal diet effects. Nerve growth factor mRNA and protein levels were significantly reduced in response to both maternal and postweaning high-fat diets. Expression levels for the N-methyl-D-aspartate receptor (NMDA) receptor subunit NR2B as well as synaptophysin were significantly decreased in response to both maternal and postweaning diets. Synaptotagmin was significantly increased in offspring from high fat-fed dams. These data support the hypothesis that exposure to excess saturated fat during hippocampal development is associated with complex patterns of gene expression and deficits in learning and memory.