3 resultados para Semantic enrichment

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the functional organization of semantic memory for music by comparing priming across familiar songs both within modalities (Experiment 1, tune to tune; Experiment 3, category label to lyrics) and across modalities (Experiment 2, category label to tune; Experiment 4, tune to lyrics). Participants judged whether or not the target tune or lyrics were real (akin to lexical decision tasks). We found significant priming, analogous to linguistic associative-priming effects, in reaction times for related primes as compared to unrelated primes, but primarily for within-modality comparisons. Reaction times to tunes (e.g., "Silent Night") were faster following related tunes ("Deck the Hall") than following unrelated tunes ("God Bless America"). However, a category label (e.g., Christmas) did not prime tunes from within that category. Lyrics were primed by a related category label, but not by a related tune. These results support the conceptual organization of music in semantic memory, but with potentially weaker associations across modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of learning the categories of new tunes in older and younger adults was examined for this study. Tunes were presented either one or three times along with a category name to see if multiple repetitions aid in category memory. Additionally, toexamine if an association may help some listeners, especially older ones, to better remember category information, some tunes were presented with a short associative fact; this fact was either neutral or emotional. Participants were tested on song recognition,fact recognition, and category memory. For all tasks, there was a benefit of three presentations. There were no age differences in fact recognition. For both song recognition and categorization, the memory burden of a neutral association was lessened when the association was emotional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for biomethane capture and carbon dioxide sequestration to mitigate evident global climate change. This research work investigated the potential for microalgae to remove CO2 from biogas as a biotechnical method for upgrading the thermal value for subsequent compression, liquification, or introduction to natural gas pipelines. Because biogas is largely methane, the effect of high methane environments on mixed microalgae was explored and found that specific carbon utilization rates were not statistically different when microalgae were exposed to biogas environments (70% v/v CH4) , relative to high CO2 environment. The uses of conventional bubbled column photobioreactors (PBR) were assessed for CO2 removal and subsequent CH4 enrichment. A continuously-bubbled biogas PBR (cB-PBR5) and intermittently-bubbled biogas PBR (iB-PBR) experienced CO2 loading rates of about 1664 and 832 mg C/L*day and showed 30.0 and 60.1 % carbon removal, respectively. However, a lack of biogas enrichment and issues associated growth inhibition due to high CO2 environments as well as stripping the dissolved gases, namely oxygen and nitrogen, from the bulk liquid and introduction to the outlet gas prompted the consideration for gas/liquid separation using nonporous hollow-fiber (HF) membranes for CO2 transfer. The potential for two non-porous HF membrane materials [polydimethylsiloxane (PDMS) and composite polyurethane (PU)] were modeled along fiber length using a mechanistic model based on polymeric material transport properties (Gilmore et al., 2009). Based on a high CO2:CH4 permeability selectivity for PU of 76.2 the model predicted gas enrichment along an 8.5 cm fiber length. Because PDMS permeability selectivity is low (3.5), evident gas transfer was not predicated along a 34.3 cm length. Both of these HF materials were implemented in hollow-fiber membrane-carbonated biofilm (HFMcB) PBRs for microalgal-mediated biogas enrichment. Phototrophic biofilm colonization occurred on the membrane, where CO2 concentration was greatest. The presence of a biofilm demonstrated greater resiliency to high CO2 environments, compared to the conventional PBRs. However, as the PDMS model predicted, the PDMS HFMcBs did not demonstrate gas enrichment. These reactors received CO2 loading rates of 200 mg C/L*day based on PDMS permeability flux and showed approximately 65% removal of the total C transferred across the membrane. Thus, the HFMcBs demonstrated controlled carbonation of the bulk liquid via a nonporous HF membrane. Likewise, the experimental PU HFMcB did not show gas enrichment yet this result should be further explored due to the high permeability selectivity of the polymeric material. Chemical stratifications, namely pH and dissolved O2, present in a PDMS membrane-carbonated biofilm were analyzed using electrochemical microsensors. Results indicated that high DO (20 mg L-1) exists at surface of the biofilm where light availability is greatest and low pH microenvironments (pH=5.40) exist deep in the biofilm where the diffusive flux of CO2 drives transfer through the biofilm. The presence of a 400-600 ¿m liquid phase boundary layer was evident from microsensor profiles. Cryosectioning of the biofilm samples showed the biofilm to be approximately 1.17 ± 0.07 mm thick, suggesting that the high localized concentration of biomass associated with the phototrophic biofilm aided in overcoming inhibition in a microenvironment dominated by CO2(aq). Challenges of biofilm detachment and PBR fouling as well as microalgal growth inhibition in the presence of high CO2 content remain for applications of microalgae for biogas enrichment.