4 resultados para Segmentation Ability
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO methods have been used to calculate geometries of neutral clusters of water, (H2O)n, where n = 2–6. The structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. These methods also provide excellent thermochemical predictions for water clusters, and thus can be used with confidence in evaluating the structures and thermochemistry of water clusters.
Resumo:
The PM3 semiempirical quantum-mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02-0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol-' suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol-' imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high-resolution spectroscopic observations, gas electron diffraction data, and high-level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1-0.2 for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1-2 kcal mol-l. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and 0 predict that donor strength follows the order F > 0 > N and acceptor strength follows the order N > 0 > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F-H- - -N bond to be the strongest and the N-H- - -F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two-center repulsive forces brought about by the parameterization of the Gaussian core-core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum-mechanical calculations can be applied to small biologic systems.
Resumo:
Speech is often a multimodal process, presented audiovisually through a talking face. One area of speech perception influenced by visual speech is speech segmentation, or the process of breaking a stream of speech into individual words. Mitchel and Weiss (2013) demonstrated that a talking face contains specific cues to word boundaries and that subjects can correctly segment a speech stream when given a silent video of a speaker. The current study expanded upon these results, using an eye tracker to identify highly attended facial features of the audiovisual display used in Mitchel and Weiss (2013). In Experiment 1, subjects were found to spend the most time watching the eyes and mouth, with a trend suggesting that the mouth was viewed more than the eyes. Although subjects displayed significant learning of word boundaries, performance was not correlated with gaze duration on any individual feature, nor was performance correlated with a behavioral measure of autistic-like traits. However, trends suggested that as autistic-like traits increased, gaze duration of the mouth increased and gaze duration of the eyes decreased, similar to significant trends seen in autistic populations (Boratston & Blakemore, 2007). In Experiment 2, the same video was modified so that a black bar covered the eyes or mouth. Both videos elicited learning of word boundaries that was equivalent to that seen in the first experiment. Again, no correlations were found between segmentation performance and SRS scores in either condition. These results, taken with those in Experiment, suggest that neither the eyes nor mouth are critical to speech segmentation and that perhaps more global head movements indicate word boundaries (see Graf, Cosatto, Strom, & Huang, 2002). Future work will elucidate the contribution of individual features relative to global head movements, as well as extend these results to additional types of speech tasks.
Resumo:
Speech is typically a multimodal phenomenon, yet few studies have focused on the exclusive contributions of visual cues to language acquisition. To address this gap, we investigated whether visual prosodic information can facilitate speech segmentation. Previous research has demonstrated that language learners can use lexical stress and pitch cues to segment speech and that learners can extract this information from talking faces. Thus, we created an artificial speech stream that contained minimal segmentation cues and paired it with two synchronous facial displays in which visual prosody was either informative or uninformative for identifying word boundaries. Across three familiarisation conditions (audio stream alone, facial streams alone, and paired audiovisual), learning occurred only when the facial displays were informative to word boundaries, suggesting that facial cues can help learners solve the early challenges of language acquisition.