6 resultados para Scaling Criteria
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
To protect motorists and avoid tort liability, highway agencies expend considerable resources to repair damaged longitudinal barriers, such as w-beam guardrails. With limited funding available, though, highway agencies are unable to maintain all field-installed systems in the ideal as-built condition. Instead, these agencies focus on repairing only damage that has a detrimental effect on the safety performance of the barrier. The distinction between minor damage and more severe performance-altering damage, however, is not always clear. This paper presents a critical review of current United States (US) and Canadian criteria on whether to repair damaged longitudinal barrier. Barrier repair policies were obtained via comprehensive literature review and a survey of US and Canadian transportation agencies. In an analysis of the maintenance procedures of 40 US States and 8 Canadian transportation agencies, fewer than one-third of highway agencies were found to have quantitative measures to determine when barrier repair is warranted. In addition, no engineering basis for the current US barrier repair guidelines could be found. These findings underscore the importance of the development of quantitative barrier repair guidelines based on a strong technical foundation.
Resumo:
Objectives: Previous research conducted in the late 1980s suggested that vehicle impacts following an initial barrier collision increase severe occupant injury risk. Now over 25years old, the data are no longer representative of the currently installed barriers or the present US vehicle fleet. The purpose of this study is to provide a present-day assessment of secondary collisions and to determine if current full-scale barrier crash testing criteria provide an indication of secondary collision risk for real-world barrier crashes. Methods: To characterize secondary collisions, 1,363 (596,331 weighted) real-world barrier midsection impacts selected from 13years (1997-2009) of in-depth crash data available through the National Automotive Sampling System (NASS) / Crashworthiness Data System (CDS) were analyzed. Scene diagram and available scene photographs were used to determine roadside and barrier specific variables unavailable in NASS/CDS. Binary logistic regression models were developed for second event occurrence and resulting driver injury. To investigate current secondary collision crash test criteria, 24 full-scale crash test reports were obtained for common non-proprietary US barriers, and the risk of secondary collisions was determined using recommended evaluation criteria from National Cooperative Highway Research Program (NCHRP) Report 350. Results: Secondary collisions were found to occur in approximately two thirds of crashes where a barrier is the first object struck. Barrier lateral stiffness, post-impact vehicle trajectory, vehicle type, and pre-impact tracking conditions were found to be statistically significant contributors to secondary event occurrence. The presence of a second event was found to increase the likelihood of a serious driver injury by a factor of 7 compared to cases with no second event present. The NCHRP Report 350 exit angle criterion was found to underestimate the risk of secondary collisions in real-world barrier crashes. Conclusions: Consistent with previous research, collisions following a barrier impact are not an infrequent event and substantially increase driver injury risk. The results suggest that using exit-angle based crash test criteria alone to assess secondary collision risk is not sufficient to predict second collision occurrence for real-world barrier crashes.
Resumo:
Region-specific empirically based ground-truth (EBGT) criteria used to estimate the epicentral-location accuracy of seismic events have been developed for the Main Ethiopian Rift and the Tibetan plateau. Explosions recorded during the Ethiopia-Afar Geoscientific Lithospheric Experiment (EAGLE), the International Deep Profiling of Tibet, and the Himalaya (INDEPTH III) experiment provided the necessary GT0 reference events. In each case, the local crustal structure is well known and handpicked arrival times were available, facilitating the establishment of the location accuracy criteria through the stochastic forward modeling of arrival times for epicentral locations. In the vicinity of the Main Ethiopian Rift, a seismic event is required to be recorded on at least 8 stations within the local Pg/Pn crossover distance and to yield a network-quality metric of less than 0.43 in order to be classified as EBGT5(95%) (GT5 with 95% confidence). These criteria were subsequently used to identify 10 new GT5 events with magnitudes greater than 2.1 recorded on the Ethiopian Broadband Seismic Experiment (EBSE) network and 24 events with magnitudes greater than 2.4 recorded on the EAGLE broadband network. The criteria for the Tibetan plateau are similar to the Ethiopia criteria, yet slightly less restrictive as the network-quality metric needs to be less than 0.45. Twenty-seven seismic events with magnitudes greater than 2.5 recorded on the INDEPTH III network were identified as GT5 based on the derived criteria. When considered in conjunction with criteria developed previously for the Kaapvaal craton in southern Africa, it is apparent that increasing restrictions on the network-quality metric mirror increases in the complexity of geologic structure from craton to plateau to rift. Accession Number: WOS:000322569200012
Resumo:
We present a multistage strategy to define the scale and geographic distribution of 'local' ceramic production at Lydian Sardis based on geochemical analysis (NAA) of a large diverse ceramic sample (n = 281). Within the sphere of local ceramic production, our results demonstrate an unusual pattern of reliance on a single resource relative to other contemporary Iron Age centers. When our NAA results are combined with legacy NAA provenience data for production centers in Western Anatolia, we can differentiate ceramic emulation from exchange, establish probable proveniences for the non-local component of the dataset, and define new non-local groups with as yet no known provenience. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Previous research conducted in the late 1980’s suggested that vehicle impacts following an initial barrier collision increase severe occupant injury risk. Now over twenty-five years old, the data used in the previous research is no longer representative of the currently installed barriers or US vehicle fleet. The purpose of this study is to provide a present-day assessment of secondary collisions and to determine if full-scale barrier crash testing criteria provide an indication of secondary collision risk for real-world barrier crashes. The analysis included 1,383 (596,331 weighted) real-world barrier midsection impacts selected from thirteen years (1997-2009) of in-depth crash data available through the National Automotive Sampling System (NASS) / Crashworthiness Data System (CDS). For each suitable case, the scene diagram and available scene photographs were used to determine roadside and barrier specific variables not available in NASS/CDS. Binary logistic regression models were developed for second event occurrence and resulting driver injury. Barrier lateral stiffness, post-impact vehicle trajectory, vehicle type, and pre-impact tracking conditions were found to be statistically significant contributors toward secondary event occurrence. The presence of a second event was found to increase the likelihood of a serious driver injury by a factor of seven compared to cases with no second event present. Twenty-four full-scale crash test reports were obtained for common non-proprietary US barriers, and the risk of secondary collisions was determined using recommended evaluation criteria from NCHRP Report 350. It was found that the NCHRP Report 350 exit angle criterion alone was not sufficient to predict second collision occurrence for real-world barrier crashes.
Resumo:
Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial correlations of slow particles via the four-point structure factor S-4 (q, t). Both cases, elastic (epsilon = 1) and inelastic (epsilon < 1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions in the range 0.6 <= phi <= 0.805, scaling is shown to hold: S-4 (q, t)/chi(4)(t) = s(q xi(t)). Both the dynamic susceptibility chi(4)(tau(alpha)) and the dynamic correlation length xi(tau(alpha)) evaluated at the alpha relaxation time tau(alpha) can be fitted to a power law divergence at a critical packing fraction. The measured xi(tau(alpha)) widely exceeds the largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a slow cluster and the correlation length are related by a robust power law, chi(4)(tau(alpha)) approximate to xi(d-p) (tau(alpha)), with an exponent d - p approximate to 1.6. This scaling is remarkably independent of epsilon, even though the strength of the dynamical heterogeneity at constant volume fraction depends strongly on epsilon.