8 resultados para SUNLIGHT
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
According to Charles Musser, Huygens had two key innovations for his magic lantern: 1. Images painted on glass instead of etchings on mirrors. 2. An artificial light source was used instead of the reflection of sunlight. (20) Glass slides (often more than one) with hand drawn images are the standard aesthetic for these slides. They are then usually mounted in rectangular wooden frames approx. 4 x 7 inches with a 3 inch circular opening for the image. (Musser 30) The various mechanisms attached to the images are described in the Object Narrative section.
Resumo:
According to Charles Musser, Huygens had two key innovations for his magic lantern: 1. Images painted on glass instead of etchings on mirrors. 2. An artificial light source was used instead of the reflection of sunlight. (20) Glass slides (often more than one) with hand drawn images are the standard aesthetic for these slides. They are then usually mounted in rectangular wooden frames approx. 4 x 7 inches with a 3 inch circular opening for the image. (Musser 30) The various mechanisms attached to the images are described in the Object Narrative section.
Resumo:
According to Charles Musser, Huygens had two key innovations for his magic lantern: 1. Images painted on glass instead of etchings on mirrors. 2. An artificial light source was used instead of the reflection of sunlight. (20) Glass slides (often more than one) with hand drawn images are the standard aesthetic for these slides. They are then usually mounted in rectangular wooden frames approx. 4 x 7 inches with a 3 inch circular opening for the image. (Musser 30) The various mechanisms attached to the images are described in the Object Narrative section.
Resumo:
According to Charles Musser, Huygens had two key innovations for his magic lantern: 1. Images painted on glass instead of etchings on mirrors. 2. An artificial light source was used instead of the reflection of sunlight. (20) Glass slides (often more than one) with hand drawn images are the standard aesthetic for these slides. They are then usually mounted in rectangular wooden frames approx. 4 x 7 inches with a 3 inch circular opening for the image. (Musser 30) The various mechanisms attached to the images are described in the Object Narrative section.
Resumo:
A new concept for a solar thermal electrolytic process was developed for the production of H-2 from water. A metal oxide is reduced to a lower oxidation state in air with concentrated solar energy. The reduced oxide is then used either as an anode or solute for the electrolytic production of H-2 in either an aqueous acid or base solution. The presence of the reduced metal oxide as part of the electrolytic cell decreases the potential required for water electrolysis below the ideal 1.23 V required when H-2 and O-2 evolve at 1 bar and 298 K. During electrolysis, H-2 evolves at the cathode at 1 bar while the reduced metal oxide is returned to its original oxidation state, thus completing the H-2 production cycle. Ideal sunlight-to-hydrogen thermal efficiencies were established for three oxide systems: Fe2O3-Fe3O4, Co3O4-CoO, and Mn2O3-Mn3O4. The ideal efficiencies that include radiation heat loss are as high or higher than corresponding ideal values reported in the solar thermal chemistry literature. An exploratory experimental study for the iron oxide system confirmed that the electrolytic and thermal reduction steps occur in a laboratory scale environment.
Resumo:
Solar energy is the most abundant persistent energy resource. It is also an intermittent one available for only a fraction of each day while the demand for electric power never ceases. To produce a significant amount of power at the utility scale, electricity generated from solar energy must be dispatchable and able to be supplied in response to variations in demand. This requires energy storage that serves to decouple the intermittent solar resource from the load and enables around-the-clock power production from solar energy. Practically, solar energy storage technologies must be efficient as any energy loss results in an increase in the amount of required collection hardware, the largest cost in a solar electric power system. Storing solar energy as heat has been shown to be an efficient, scalable, and relatively low-cost approach to providing dispatchable solar electricity. Concentrating solar power systems that include thermal energy storage (TES) use mirrors to focus sunlight onto a heat exchanger where it is converted to thermal energy that is carried away by a heat transfer fluid and used to drive a conventional thermal power cycle (e.g., steam power plant), or stored for later use. Several approaches to TES have been developed and can generally be categorized as either thermophysical (wherein energy is stored in a hot fluid or solid medium or by causing a phase change that can later be reversed to release heat) or thermochemical (in which energy is stored in chemical bonds requiring two or more reversible chemical reactions).
Resumo:
When Huxley proposed, Blythe imagined herself fifty years into the future at his funeral. He was such a good man, they’d say. Seventy-two is too young, they’d say. She’d nod and, she had imagined, remember this moment – them lounging in her bed during the early afternoon with the sunlight threatening to burst from behind the drawn shades, him lying on his side with his left arm anchored around her waist, and the tickle of his thumb as he traced circles on her bellybutton. She rubbed her nose against his neck and breathed. His scent was different from that of Walter. Huxley smelled of pears and basil. Walter smelled of leather and soap. She didn’t smell Walter intentionally, of course. He walked into the White Dog the prior day while she was drinking a mint-mocha cappuccino and studying for an exam on medical physiology. The wind whiffed his odor towards her. She didn’t look at him, but she couldn’t stop from inhaling. “People get married after college,” Huxley swung his right leg over and straddled her, forcing her to look at him. “It’s almost been a year since we graduated. It’s what we should do.” She had wondered if he could donate organs if he were seventy-two years old. Not his liver or heart or anything like that, of course, but maybe his eyes. It’d be a shame if they couldn’t preserve his eyes. She noticed them first: they were alert and misty blue, like Santa’s. But then she wondered if eye characteristics like color were even changed during cornea transplants. Walter had plain brown eyes. She hated brown eyes. She told people that she had brown eyes, because they were dark and no one ever looked close enough. Except Huxley. They were at dinner with mutual friends and were talking about eye color, and how they all wished that theirs were like those of the young Afghan girl on the 1985 cover of National Geographic.
Resumo:
Solar research is primarily conducted in regions with consistent sunlight, severely limiting research opportunities in many areas. Unfortunately, the unreliable weather in Lewisburg, PA, can prove difficult for such testing to be conducted. As such, a solar simulator was developed for educational purposes for the Mechanical Engineering department at Bucknell University. The objective of this work was to first develop a geometric model to evaluate a one sun solar simulator. This was intended to provide a simplified model that could be used without the necessity of expensive software. This model was originally intended to be validated experimentally, but instead was done using a proven ray tracing program, TracePro. Analyses with the geometrical model and TracePro demonstrated the influence the geometrical properties had results, specifically the reflector (aperture) diameter and the rim angle. Subsequently, the two were approaches were consistent with one another for aperture diameters 0.5 m and larger, and for rim angles larger than 45°. The constructed prototype, that is currently untested, was designed from information provided by the geometric model, includes a metal halide lamp with a 9.5 mm arc diameter and parabolic reflector with an aperture diameter of 0.631 meters. The maximum angular divergence from the geometrical model was predicted to be 30 mRadians. The average angular divergence in TraceProof the system was 19.5 mRadians, compared to the sun’s divergence of 9.2 mRadians. Flux mapping in TracePro showed an intensity of 1000 W/m2 over the target plane located 40 meters from the lamp. The error between spectrum of the metal halide lamp and the solar spectrum was 10.9%, which was found by comparing their respective Plank radiation distributions. The project did not satisfy the original goal of matching the angular divergence of sunlight, although the system could still to be used for optical testing. The geometric model indicated performance in this area could be improved by increasing the diameter of the reflector, as well as decreasing the source diameter. Although ray tracing software provides more information to analyze the simulator system, the geometrical model is adequate to provide enough information to design a system.