2 resultados para SOLAR ACTIVE-REGION
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Brain functions, such as learning, orchestrating locomotion, memory recall, and processing information, all require glucose as a source of energy. During these functions, the glucose concentration decreases as the glucose is being consumed by brain cells. By measuring this drop in concentration, it is possible to determine which parts of the brain are used during specific functions and consequently, how much energy the brain requires to complete the function. One way to measure in vivo brain glucose levels is with a microdialysis probe. The drawback of this analytical procedure, as with many steadystate fluid flow systems, is that the probe fluid will not reach equilibrium with the brain fluid. Therefore, brain concentration is inferred by taking samples at multiple inlet glucose concentrations and finding a point of convergence. The goal of this thesis is to create a three-dimensional, time-dependent, finite element representation of the brainprobe system in COMSOL 4.2 that describes the diffusion and convection of glucose. Once validated with experimental results, this model can then be used to test parameters that experiments cannot access. When simulations were run using published values for physical constants (i.e. diffusivities, density and viscosity), the resulting glucose model concentrations were within the error of the experimental data. This verifies that the model is an accurate representation of the physical system. In addition to accurately describing the experimental brain-probe system, the model I created is able to show the validity of zero-net-flux for a given experiment. A useful discovery is that the slope of the zero-net-flux line is dependent on perfusate flow rate and diffusion coefficients, but it is independent of brain glucose concentrations. The model was simplified with the realization that the perfusate is at thermal equilibrium with the brain throughout the active region of the probe. This allowed for the assumption that all model parameters are temperature independent. The time to steady-state for the probe is approximately one minute. However, the signal degrades in the exit tubing due to Taylor dispersion, on the order of two minutes for two meters of tubing. Given an analytical instrument requiring a five μL aliquot, the smallest brain process measurable for this system is 13 minutes.
Resumo:
Cyclo[EKTOVNOGN] (AFPep), a cyclic 9-amino acid peptide derived from the active site of alpha-fetoprotein, has been shown to prevent carcinogen-induced mammary cancer in rats and inhibit the growth of ER+ human breast cancer xenografts in mice. Recently, studies using replica exchange molecular dynamics predicted that the TOVN region of AFPep might form a dynamically stable putative Type I beta-turn, and thus be biologically active without additional amino acids. The studies presented in this paper were performed to determine whether TOVN and other small analogs of AFPep would inhibit estrogen-stimulated cancer growth and exhibit a broad effective-dose range. These peptides contained nine or fewer amino acids, and were designed to bracket or include the putative pharmacophoric region (TOVN) of AFPep. Biological activities of these peptides were evaluated using an immature mouse uterine growth inhibition assay, a T47D breast cancer cell proliferation assay, and an MCF-7 breast cancer xenograft assay. TOVN had very weak antiestrogenic activity in comparison to AFPep's activity, whereas TOVNO had antiestrogenic and anticancer activities similar to AFPep. OVNO, which does not form a putative Type I beta-turn, had virtually no antiestrogenic and anticancer activities. A putative proteolytic cleavage product of AFPep, TOVNOGNEK, significantly inhibited E2-stimulated growth in vivo and in vitro over a wider dose range than AFPep or TOVNO. We conclude that TOVNO has anticancer potential, that TOVNOGNEK is as effective as AFPep in suppressing growth of human breast cancer cells, and that it does so over a broader effective-dose range.