1 resultado para SMOOTHING SPLINE
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (23)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (13)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (3)
- Aston University Research Archive (30)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (26)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (59)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (22)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (40)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- DRUM (Digital Repository at the University of Maryland) (2)
- eScholarship Repository - University of California (1)
- Glasgow Theses Service (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (7)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (23)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (19)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (65)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (7)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (42)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (13)
- Université de Montréal (2)
- Université de Montréal, Canada (22)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Michigan (2)
- University of Queensland eSpace - Australia (18)
- University of Washington (4)
Resumo:
We present a new approach for corpus-based speech enhancement that significantly improves over a method published by Xiao and Nickel in 2010. Corpus-based enhancement systems do not merely filter an incoming noisy signal, but resynthesize its speech content via an inventory of pre-recorded clean signals. The goal of the procedure is to perceptually improve the sound of speech signals in background noise. The proposed new method modifies Xiao's method in four significant ways. Firstly, it employs a Gaussian mixture model (GMM) instead of a vector quantizer in the phoneme recognition front-end. Secondly, the state decoding of the recognition stage is supported with an uncertainty modeling technique. With the GMM and the uncertainty modeling it is possible to eliminate the need for noise dependent system training. Thirdly, the post-processing of the original method via sinusoidal modeling is replaced with a powerful cepstral smoothing operation. And lastly, due to the improvements of these modifications, it is possible to extend the operational bandwidth of the procedure from 4 kHz to 8 kHz. The performance of the proposed method was evaluated across different noise types and different signal-to-noise ratios. The new method was able to significantly outperform traditional methods, including the one by Xiao and Nickel, in terms of PESQ scores and other objective quality measures. Results of subjective CMOS tests over a smaller set of test samples support our claims.