6 resultados para SLOW RELAXATION
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Laboratory measurements of the rate coefficient for quenching of O3(nu2) by ground-state atomic oxygen, kO(nu2), at room temperature are presented. kO(nu2) is currently not well known and is necessary for appropriate nonlocal thermodynamic equilibrium modeling of the upper mesosphere and lower thermosphere. In this work, a 266 nm laser pulse photolyzes a small amount of O3 in a slow-flowing gas mixture of O3, Xe, and Ar. This process simultaneously produces atomic oxygen and increases the temperature of the gas mixture slightly, thereby increasing the population in the O3(nu2) state. Transient diode laser absorption spectroscopy is used to monitor the populations of the O3(nu2) and ground vibrational states as the system re-equilibrates. Relaxation rates are measured over a range of quencher concentrations to extract the rate coefficient of interest. The value of kO(nu2) was determined to be (2.2 0.5) * 10(-12) cm(3) s(-1).
Resumo:
Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) AI-7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1E(-5) s(-1), 1E(-6) s(-1) and 1E(-7) s(-1). The UFG Al-7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Eighty-one listeners defined by three age ranges (18–30, 31–59, and over 60 years) and three levels of musical experience performed an immediate recognition task requiring the detection of alterations in melodies. On each trial, a brief melody was presented, followed 5 sec later by a test stimulus that either was identical to the target or had two pitches changed, for a same–different judgment. Each melody pair was presented at 0.6 note/sec, 3.0 notes/sec, or 6.0 notes/sec. Performance was better with familiar melodies than with unfamiliar melodies. Overall performance declined slightly with age and improved substantially with increasing experience, in agreement with earlier results in an identification task. Tempo affected performance on familiar tunes (moderate was best), but not on unfamiliar tunes. We discuss these results in terms of theories of dynamic attending, cognitive slowing, and working memory in aging.
Resumo:
Through the use of Transient Diode Laser Absorption Spectroscopy (TDLAS), the rate coefficient for the vibrational relaxation of N2O (ν2) by O(3P) at room temperature (32 ºC)) was determined to be (1.51 ± 0.11)x10-12 cm3molecule-1sec-1. A Q-switched, frequency quadrupled (266 nm) Nd:YAG laser pulse was used as the pump for this experiment. This pulse caused the photodissociation of O3 into O2 and O atoms.Excited oxygen (O(1D)) was collisionally quenched to ground state (O(3P)) by Ar and/or Xe. Photodissociation also caused a temperature jump within the system, exciting the ν2 state of N2O molecules. Population in the ν2 state was monitored through a TDLASobservation of a ν3 transition. Data were fit using a Visual Fortran 6.0 Global Fitting program. Analysis of room temperature data taken using only Ar to quench O atoms to the ground state gave the same rate coefficient as analysis of data taken using an Ar/Xe mixture, suggesting Ar alone is a sufficient bath gas. Experimentation was alsoperformed at -27 ºC and -82 ºC for a temperature dependence analysis. A linear regression analysis gave a rate coefficient dependence on temperature of ... for the rate coefficient of the vibrational relaxation of N2O (ν2) by atomic oxygen.
Resumo:
Carbon dioxide (CO2) has been of recent interest due to the issue of greenhouse cooling in the upper atmosphere by species such as CO2 and NO. In the Earth’s upper atmosphere, between altitudes of 75 and 110 km, a collisional energy exchange occurs between CO2 and atomic oxygen, which promotes a population of ground state CO2 to the bend excited state. The relaxation of CO2 following this excitation is characterized by spontaneous emission of 15-μm. Most of this energy is emitted away from Earth. Due to the low density in the upper atmosphere, most of this energy is not reabsorbed and thus escapes into space, leading to a local cooling effect in the upper atmosphere. To determine the efficiency of the CO2- O atom collisional energy exchange, transient diode laser absorption spectroscopy was used to monitor the population of the first vibrationally excited state, 13CO2(0110) or ν2, as a function of time. The rate coefficient, kO(ν2), for the vibrational relaxation 13CO2 (ν2)-O was determined by fitting laboratory measurements using a home-written linear least squares algorithm. The rate coefficient, kO(ν2), of the vibrational relaxation of 13CO2(ν2), by atomic oxygen at room temperature was determined to be (1.6 ± 0.3 x 10-12 cm3 s-1), which is within the uncertainty of the rate coefficient previously found in this group for 12CO2(ν2) relaxation. The cold temperature kO(ν2) values were determined to be: (2.1 ± 0.8) x 10-12 cm3 s-1 at Tfinal = 274 K, (1.8 ± 0.3) x 10-12 cm3 s-1 at Tfinal = 239 K, (2 ± 1) x 10-12 cm3 s-1 at Tfinal = 208 K, and (1.7 ± 0.3) x 10-12 cm3 s-1 at Tfinal = 186 K. These data did not show a definitive negative temperature dependence comparable to that found for 12CO2 previously.
Resumo:
Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial correlations of slow particles via the four-point structure factor S-4 (q, t). Both cases, elastic (epsilon = 1) and inelastic (epsilon < 1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions in the range 0.6 <= phi <= 0.805, scaling is shown to hold: S-4 (q, t)/chi(4)(t) = s(q xi(t)). Both the dynamic susceptibility chi(4)(tau(alpha)) and the dynamic correlation length xi(tau(alpha)) evaluated at the alpha relaxation time tau(alpha) can be fitted to a power law divergence at a critical packing fraction. The measured xi(tau(alpha)) widely exceeds the largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a slow cluster and the correlation length are related by a robust power law, chi(4)(tau(alpha)) approximate to xi(d-p) (tau(alpha)), with an exponent d - p approximate to 1.6. This scaling is remarkably independent of epsilon, even though the strength of the dynamical heterogeneity at constant volume fraction depends strongly on epsilon.