3 resultados para Retaining walls

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we refine a politics of thinking from the margins by exploring a pedagogical model that advances transformative notions of service learning as social justice teaching. Drawing on a recent course we taught involving both incarcerated women and traditional college students, we contend that when communication among differentiated and stratified parties occurs, one possible result is not just a view of the other but also a transformation of the self and other. More specifically, we suggest that an engaged feminist praxis of teaching incarcerated women together with college students helps illuminate the porous nature of fixed markers that purport to reveal our identities (e.g., race and gender), to emplace our bodies (e.g., within institutions, prison gates, and walls), and to specify our locations (e.g., cultural, geographic, socialeconomic). One crucial theoretical insight our work makes clear is that the model of social justice teaching to which we aspired necessitates re-conceptualizing ourselves as students and professors whose subjectivities are necessarily relational and emergent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of cyclic wetting and drying on the backfill used in soil-bentonite (SB) cutoff walls. For this purpose, model SB vertical cutoff wall backfills were prepared comprising of a fine grained mortar sand and 2% bentonite (by total weight) and 4% bentonite (by total weight). Results of the study indicate that the volume change is influenced by the bentonite content, that is, the increase in volume change increased with increasing bentonite content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel (CFS) combined with wood sheathing, such as oriented strand board (OSB), forms shear walls that can provide lateral resistance to seismic forces. The ability to accurately predict building deformations in damaged states under seismic excitations is a must for modern performance-based seismic design. However, few static or dynamic tests have been conducted on the non-linear behavior of CFS shear walls. Thus, the purpose of this research work is to provide and demonstrate a fastener-based computational model of CFS wall models that incorporates essential nonlinearities that may eventually lead to improvement of the current seismic design requirements. The approach is based on the understanding that complex interaction of the fasteners with the sheathing is an important factor in the non-linear behavior of the shear wall. The computational model consists of beam-column elements for the CFS framing and a rigid diaphragm for the sheathing. The framing and sheathing are connected with non-linear zero-length fastener elements to capture the OSB sheathing damage surrounding the fastener area. Employing computational programs such as OpenSees and MATLAB, 4 ft. x 9 ft., 8 ft. x 9 ft. and 12 ft. x 9 ft. shear wall models are created, and monotonic lateral forces are applied to the computer models. The output data are then compared and analyzed with the available results of physical testing. The results indicate that the OpenSees model can accurately capture the initial stiffness, strength and non-linear behavior of the shear walls.