3 resultados para Restormel castle.
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The emerging wildlife disease white-nose syndrome is causing widespread mortality in hibernating North American bats. White-nose syndrome occurs when the fungus Geomyces destructans infects the living skin of bats during hibernation, but links between infection and mortality are underexplored. We analyzed blood from hibernating bats and compared blood electrolyte levels to wing damage caused by the fungus. Sodium and chloride tended to decrease as wing damage increased in severity. Depletion of these electrolytes suggests that infected bats may become hypotonically dehydrated during winter. Although bats regularly arouse from hibernation to drink during winter, water available in hibernacula may not contain sufficient electrolytes to offset winter losses caused by disease. Damage to bat wings from G. destructans may cause life-threatening electrolyte imbalances.
Resumo:
This study examined the impact of the Nursing Home Reform Act of 1987 on resident-and-facility-level risk factors for physical restraint use in nursing homes. Data on the 1990 and 1993 cohorts were obtained from 268 facilities in 10 states, and data on a 1996 cohort were obtained from the Medical Expenditure Panel Survey, which sampled more than 800 nursing homes nationwide. Multivariate logistic regression models were generated for each cohort to identify the impact of resident- and facility-level risk factors for restraint use. The results indicate that the use of physical restraints continues to decline. Thirty-six percent of the 1990 cohort, 26 percent of the 1993 cohort, and 17 percent of the 1996 cohort were physically restrained. Although there was a reduced rate of restraint use from 1990 to 1996, similar resident-level factors but different facility-level factors were associated with restraint use at different points in time.
Resumo:
Laboratory measurements of the rate coefficient for quenching of O3(nu2) by ground-state atomic oxygen, kO(nu2), at room temperature are presented. kO(nu2) is currently not well known and is necessary for appropriate nonlocal thermodynamic equilibrium modeling of the upper mesosphere and lower thermosphere. In this work, a 266 nm laser pulse photolyzes a small amount of O3 in a slow-flowing gas mixture of O3, Xe, and Ar. This process simultaneously produces atomic oxygen and increases the temperature of the gas mixture slightly, thereby increasing the population in the O3(nu2) state. Transient diode laser absorption spectroscopy is used to monitor the populations of the O3(nu2) and ground vibrational states as the system re-equilibrates. Relaxation rates are measured over a range of quencher concentrations to extract the rate coefficient of interest. The value of kO(nu2) was determined to be (2.2 0.5) * 10(-12) cm(3) s(-1).