2 resultados para Reflection coefficient
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
A successful actor often requires a specific acting method or style to enhance their performance. Through theatrical research, rehearsal and performance, an actor can narrow down their seemingly endless search for the most productive methodology. By researching, studying, and applying the methods of Constantin Stanislavski, Stella Adler,and Tadashi Suzuki to my rehearsal process, I have found my most effective acting style: Stella Adler?s method. I utilize this acting method during the performance period of my early professional acting career. Experimental research for this thesis was completed inthe studio. I applied each of the three aforementioned methods to a dramatic/classical monologue. The results I gathered helped me to decide upon Adler?s methodology to carry with me through my upcoming professional auditions and career. From casting resulting from the auditions, I will employ the methodology to my professional work asan actress. Each acting teacher has provided the performance world with a new way to experience their stage time. The methods are unique and enable the actor to find the most dynamic performance through engaging technical skill.
Resumo:
Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.