3 resultados para RI
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
For (H2O)n where n = 1–10, we used a scheme combining molecular dynamics sampling with high level ab initio calculations to locate the global and many low lying local minima for each cluster. For each isomer, we extrapolated the RI-MP2 energies to their complete basis set limit, included a CCSD(T) correction using a smaller basis set and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled and unscaled harmonic vibrational frequencies. The vibrational scaling factors were determined specifically for water clusters by comparing harmonic frequencies with VPT2 fundamental frequencies. We find the CCSD(T) correction to the RI-MP2 binding energy to be small (<1%) but still important in determining accurate conformational energies. Anharmonic corrections are found to be non-negligble; they do not alter the energetic ordering of isomers, but they do lower the free energies of formation of the water clusters by as much as 4 kcal/mol at 298.15 K.
Resumo:
For (H2O)n where n = 1–10, we used a scheme combining molecular dynamics sampling with high level ab initio calculations to locate the global and many low lying local minima for each cluster. For each isomer, we extrapolated the RI-MP2 energies to their complete basis set limit, included a CCSD(T) correction using a smaller basis set and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled and unscaled harmonic vibrational frequencies. The vibrational scaling factors were determined specifically for water clusters by comparing harmonic frequencies with VPT2 fundamental frequencies. We find the CCSD(T) correction to the RI-MP2 binding energy to be small (
Resumo:
The abundance of alpha-fetoprotein (AFP), a natural protein produced by the fetal yolk sac during pregnancy, correlates with lower incidence of estrogen receptor positive (ER+) breast cancer. The pharmacophore region of AFP has been narrowed down to a four amino acid (AA) region in the third domain of the 591 AA peptide. Our computational study focuses on a 4-mer segment consisting of the amino acids threonine-proline-valine-asparagine (TPVN). We have run replica exchange molecular dynamics (REMD) simulations and used 120 configurational snapshots from the total trajectory as starting configurations for quantum chemical calculations. We optimized structures using semiempirical (PM3, PM6, PM6-D2, PM6-H2, PM6-DH+, PM6-DH2) and density functional methods (TPSS, PBE0, M06-2X). By comparing the accuracy of these methods against RI-MP2 benchmarks, we devised a protocol for calculating the lowest energy conformers of these peptides accurately and efficiently. This protocol screens out high-energy conformers using lower levels of theory and outlines a general method for predicting small peptide structures.