1 resultado para RF Front-End
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (15)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (14)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (40)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Brock University, Canada (19)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (84)
- Chapman University Digital Commons - CA - USA (3)
- Claremont University Consortium, United States (1)
- Cochin University of Science & Technology (CUSAT), India (13)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (81)
- Dalarna University College Electronic Archive (8)
- Digital Archives@Colby (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (87)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (25)
- Institute of Public Health in Ireland, Ireland (12)
- Instituto Politécnico do Porto, Portugal (17)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (17)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (11)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (2)
- Publishing Network for Geoscientific & Environmental Data (54)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (12)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (33)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad del Rosario, Colombia (11)
- Universidad Politécnica de Madrid (20)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (8)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (112)
- Université de Montréal, Canada (21)
- University of Michigan (35)
- University of Queensland eSpace - Australia (47)
- University of Southampton, United Kingdom (8)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
We present a new approach for corpus-based speech enhancement that significantly improves over a method published by Xiao and Nickel in 2010. Corpus-based enhancement systems do not merely filter an incoming noisy signal, but resynthesize its speech content via an inventory of pre-recorded clean signals. The goal of the procedure is to perceptually improve the sound of speech signals in background noise. The proposed new method modifies Xiao's method in four significant ways. Firstly, it employs a Gaussian mixture model (GMM) instead of a vector quantizer in the phoneme recognition front-end. Secondly, the state decoding of the recognition stage is supported with an uncertainty modeling technique. With the GMM and the uncertainty modeling it is possible to eliminate the need for noise dependent system training. Thirdly, the post-processing of the original method via sinusoidal modeling is replaced with a powerful cepstral smoothing operation. And lastly, due to the improvements of these modifications, it is possible to extend the operational bandwidth of the procedure from 4 kHz to 8 kHz. The performance of the proposed method was evaluated across different noise types and different signal-to-noise ratios. The new method was able to significantly outperform traditional methods, including the one by Xiao and Nickel, in terms of PESQ scores and other objective quality measures. Results of subjective CMOS tests over a smaller set of test samples support our claims.