3 resultados para RECONSTRUCTIONS
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Recent optimizations of NMR spectroscopy have focused their attention on innovations in new hardware, such as novel probes and higher field strengths. Only recently has the potential to enhance the sensitivity of NMR through data acquisition strategies been investigated. This thesis has focused on the practice of enhancing the signal-to-noise ratio (SNR) of NMR using non-uniform sampling (NUS). After first establishing the concept and exact theory of compounding sensitivity enhancements in multiple non-uniformly sampled indirect dimensions, a new result was derived that NUS enhances both SNR and resolution at any given signal evolution time. In contrast, uniform sampling alternately optimizes SNR (t < 1.26T2) or resolution (t~3T2), each at the expense of the other. Experiments were designed and conducted on a plant natural product to explore this behavior of NUS in which the SNR and resolution continue to improve as acquisition time increases. Possible absolute sensitivity improvements of 1.5 and 1.9 are possible in each indirect dimension for matched and 2x biased exponentially decaying sampling densities, respectively, at an acquisition time of ¿T2. Recommendations for breaking into the linear regime of maximum entropy (MaxEnt) are proposed. Furthermore, examination into a novel sinusoidal sampling density resulted in improved line shapes in MaxEnt reconstructions of NUS data and comparable enhancement to a matched exponential sampling density. The Absolute Sample Sensitivity derived and demonstrated here for NUS holds great promise in expanding the adoption of non-uniform sampling.
Resumo:
We used a colour-space model of avian vision to assess whether a distinctive bird pollination syndrome exists for floral colour among Australian angiosperms. We also used a novel phylogenetically based method to assess whether such a syndrome represents a significant degree of convergent evolution. About half of the 80 species in our sample that attract nectarivorous birds had floral colours in a small, isolated region of colour space characterized by an emphasis on long-wavelength reflection. The distinctiveness of this 'red arm' region was much greater when colours were modelled for violet-sensitive (VS) avian vision than for the ultraviolet-sensitive visual system. Honeyeaters (Meliphagidae) are the dominant avian nectarivores in Australia and have VS vision. Ancestral state reconstructions suggest that 31 lineages evolved into the red arm region, whereas simulations indicate that an average of five or six lineages and a maximum of 22 are likely to have entered in the absence of selection. Thus, significant evolutionary convergence on a distinctive floral colour syndrome for bird pollination has occurred in Australia, although only a subset of bird-pollinated taxa belongs to this syndrome. The visual system of honeyeaters has been the apparent driver of this convergence.
Resumo:
Understanding the impact of geological events on diversification processes is central to evolutionary ecology. The recent amalgamation between ecological niche models (ENMs) and phylogenetic analyses has been used to estimate historical ranges of modern lineages by projecting current ecological niches of organisms onto paleoclimatic reconstructions. A critical assumption underlying this approach is that niches are stable over time. Using Notophthalmus viridescens (eastern newt), in which four ecologically diverged subspecies are recognized, we introduce an analytical framework free from the niche stability assumption to examine how refugial retreat and subsequent postglacial expansion have affected intraspecific ecological divergence. We found that the current subspecies designation was not congruent with the phylogenetic lineages. Thus, we examined ecological niche overlap between the refugial and modern populations, in both subspecies and lineage, by creating ENMs independently for modern and estimated last glacial maximum (LGM) newt populations, extracting bioclimate variables by randomly generated points, and conducting principal component analyses. Our analyses consistently showed that when tested as a hypothesis, rather than used as an assumption, the niches of N. viridescens lineages have been unstable since the LGM (both subspecies and lineages). There was greater ecological niche differentiation among the subspecies than the modern phylogenetic lineages, suggesting that the subspecies, rather than the phylogenetic lineages, is the unit of the current ecological divergence. The present study found little evidence that the LGM refugial retreat caused the currently observed ecological divergence and suggests that ecological divergence has occurred during postglacial expansion to the current distribution ranges.