17 resultados para Produced formation water
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The effect of the swirl component of air injection on the performance of an airlift pump was examined experimentally. An airlift pump is a device that pumps a liquid or slurry using only gas injection. In this study, the liquid used was water and the injected gas was air. The effect of the air swirl was determined by measuring the water discharge from an airlift pump with an air injection nozzle in which the air flow had both axial and tangential components and then repeating the tests with a nozzle with only axial injection. The induced water flow was measured using an orifice meter in the supply pipeline. Tests were run for air pressures ranging from 10 to 30 pounds per square inch, gauge (psig), at flow rates from 5 standard cubic feet per minute (scfm) up the maximum values attainable at the given pressure (usually in the range from 20 to 35 scfm). The nozzle with only axial injection produced a water flow rate that wasequivalent to or better than that induced by the nozzle with swirl. The swirl component of air injection was found to be detrimental to pump performance for all but the smallest air injection flow rate. Optimum efficiency was found for air injection pressures of 10 psig to 15 psig. In addition, the effect of using auxiliary tangential injection of water to create a swirl component in the riser before air injection on the overall capacity (i.e., flow rate) and efficiencyof the pump was examined. Auxiliary tangential water injection was found to have no beneficial effect on the pump capacity or performance in the present system.
Resumo:
The hydraulic fracturing of the Marcellus Formation creates a byproduct known as frac water. Five frac water samples were collected in Bradford County, PA. Inorganic chemical analysis, field parameters analysis, alkalinity titrations, total dissolved solids(TDS), total suspended solids (TSS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were conducted on each sample to characterize frac water. A database of frac water chemistry results from across the state of Pennsylvania from multiple sources was compiled in order to provide the public and research communitywith an accurate characterization of frac water. Four geochemical models were created to model the reactions between frac water and the Marcellus Formation, Purcell Limestone, and the oil field brines presumed present in the formations. The average concentrations of chloride and TDS in the five frac water samples were 1.1 �± 0.5 x 105 mg/L (5.5X average seawater) and 140,000 mg/L (4X average seawater). BOD values for frac water immediately upon flow back were over 10X greater than the BOD of typical wastewater, but decreased into the range of typical wastewater after a short period of time. The COD of frac water decreases dramatically with an increase in elapsed time from flow back, but remain considerably higher than typicalwastewater. Different alkalinity calculation methods produced a range of alkalinity values for frac water: this result is most likely due to high concentrations of aliphatic acid anions present in the samples. Laboratory analyses indicate that the frac watercomposition is quite variable depending on the companies from which the water was collected, the geology of the local area, and number of fracturing jobs in which the frac water was used, but will require more treatment than typical wastewater regardless of theprecise composition of each sample. The geochemical models created suggest that the presence of organic complexes in an oil field brine and Marcellus Formation aid in the dissolution of ions such as bariumand strontium into the solution. Although equilibration reactions between the Marcellus Formation and the slickwater account for some of the final frac water composition, the predominant control of frac water composition appears to be the ratio of the mixture between the oil field brine and slickwater. The high concentration of barium in the frac water is likely due to the abundance of barite nodules in the Purcell Limestone, and the lack of sulfate in the frac water samples is due to the reducing, anoxic conditions in the earth's subsurface that allow for the degassing of H2S(g).
Resumo:
An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.
Resumo:
The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate ΔH° and ΔG° values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4+(NH3)n and NH4+(H2O)n, where n = 1−4, are reported in this paper and compared against experimental values. Agreement with the experimental values for ΔH° and ΔG° for formation of NH4+(NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4+(H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.
Resumo:
The GAUSSIAN 2, GAUSSIAN 3, complete basis set-QB3, and complete basis set-APNO methods have been used to calculate ΔH∘ and ΔG∘ values for ionic clusters of hydronium and hydroxide ions complexed with water. Results for the clusters H3O+(H2O)n andOH−(H2O)n, where n=1–4 are reported in this paper, and compared against experimental values contained in the National Institutes of Standards and Technology (NIST) database. Agreement with experiment is excellent for the three ab initio methods for formation of these clusters. The high accuracy of these methods makes them reliable for calculating energetics for the formation of ionic clusters containing water. In addition this allows them to serve as a valuable check on the accuracy of experimental data reported in the NIST database, and makes them useful tools for addressing unresolved issues in atmospheric chemistry.
Resumo:
A mixed molecular dynamics/quantum mechanics model has been applied to the ammonium/water clustering system. The use of the high level MP2 calculation method and correlated basis sets, such as aug-cc-pVDZ and aug-cc-pVTZ, lends confidence in the accuracy of the extrapolated energies. These calculations provide electronic and free energies for the formation of clusters of ammonium and 1−10 water molecules at two different temperatures. Structures and thermodynamic values are in good agreement with previous experimental and theoretical results. The estimated concentration of these clusters in the troposphere was calculated using atmospheric amounts of ammonium and water. Results show the favorability of forming these clusters and implications for ion-induced nucleation in the atmosphere.
Resumo:
An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2−10 water molecules. This approach reveals new low energy conformers for (H2O)n=7,9,10. The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.
Resumo:
Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.
Resumo:
Studying liquid fuel combustion is necessary to better design combustion systems. Through more efficient combustors and alternative fuels, it is possible to reduce greenhouse gases and harmful emissions. In particular, coal-derived and Fischer-Tropsch liquid fuels are of interest because, in addition to producing fewer emissions, they have the potential to drastically reduce the United States' dependence on foreign oil. Major academic research institutions like the Pennsylvania State University perform cutting-edge research in many areas of combustion. The Combustion Research Laboratory (CRL) at Bucknell University is striving to develop the necessary equipment to be capable of both independent and collaborative research efforts with Penn State and in the process, advance the CRL to the forefront of combustion studies. The focus of this thesis is to advance the capabilities of the Combustion Research Lab at Bucknell. Specifically, this was accomplished through a revision to a previously designed liquid fuel injector, and through the design and installation of a laser extinction system for the measurement of soot produced during combustion. The previous liquid fuel injector with a 0.005" hole did not behave as expected. Through spray testing the 0.005" injector with water, it was determined that experimental errors were made in the original pressure testing of the injector. Using data from the spray testing experiment, new theoretical hole sizes of the injector were calculated. New injectors with 0.007" and 0.0085" orifices were fabricated and subsequently tested to qualitatively validate their behavior. The injectors were installed in the combustion rig in the CRL and hot-fire tested with liquid heptane. The 0.0085" injector yielded a manageable fuel pressure and produced a broad flame. A laser extinction system was designed and installed in the CRL. This involved the fabrication of a number of custom-designed parts and the specification of laser extinction equipment for purchase. A standard operating procedure for the laser extinction system was developed to provide a consistent, safe method for measuring soot formation during combustion.
Resumo:
For (H2O)n where n = 1–10, we used a scheme combining molecular dynamics sampling with high level ab initio calculations to locate the global and many low lying local minima for each cluster. For each isomer, we extrapolated the RI-MP2 energies to their complete basis set limit, included a CCSD(T) correction using a smaller basis set and added finite temperature corrections within the rigid-rotor-harmonic-oscillator (RRHO) model using scaled and unscaled harmonic vibrational frequencies. The vibrational scaling factors were determined specifically for water clusters by comparing harmonic frequencies with VPT2 fundamental frequencies. We find the CCSD(T) correction to the RI-MP2 binding energy to be small (<1%) but still important in determining accurate conformational energies. Anharmonic corrections are found to be non-negligble; they do not alter the energetic ordering of isomers, but they do lower the free energies of formation of the water clusters by as much as 4 kcal/mol at 298.15 K.
Resumo:
The Gaussian-2, Gaussian-3, complete basis set- (CBS-) QB3, and CBS-APNO methods have been used to calculate ΔH° and ΔG° values for neutral clusters of water, (H2O)n, where n = 2−6. The structures are similar to those determined from experiment and from previous high-level calculations. The thermodynamic calculations by the G2, G3, and CBS-APNO methods compare well against the estimated MP2(CBS) limit. The cyclic pentamer and hexamer structures release the most heat per hydrogen bond formed of any of the clusters. While the cage and prism forms of the hexamer are the lowest energy structures at very low temperatures, as temperature is increased the cyclic structure is favored. The free energies of cluster formation at different temperatures reveal interesting insights, the most striking being that the cyclic trimer, cyclic tetramer, and cyclic pentamer, like the dimer, should be detectable in the lower troposphere. We predict water dimer concentrations of 9 × 1014 molecules/cm3, water trimer concentrations of 2.6 × 1012 molecules/cm3, tetramer concentrations of approximately 5.8 × 1011 molecules/cm3, and pentamer concentrations of approximately 3.5 × 1010 molecules/cm3 in saturated air at 298 K. These results have important implications for understanding the gas-phase chemistry of the lower troposphere.
Resumo:
We have investigated the thermodynamics of sulfuric acid dimer hydration using ab initio quantum mechanical methods. For (H2SO4)2(H2O)n where n = 0−6, we employed high-level ab initio calculations to locate the most stable minima for each cluster size. The results presented herein yield a detailed understanding of the first deprotonation of sulfuric acid as a function of temperature for a system consisting of two sulfuric acid molecules and up to six waters. At 0 K, a cluster of two sulfuric acid molecules and one water remains undissociated. Addition of a second water begins the deprotonation of the first sulfuric acid leading to the di-ionic species (the bisulfate anion HSO4−, the hydronium cation H3O+, an undissociated sulfuric acid molecule, and a water). Upon the addition of a third water molecule, the second sulfuric acid molecule begins to dissociate. For the (H2SO4)2(H2O)3 cluster, the di-ionic cluster is a few kcal mol−1 more stable than the neutral cluster, which is just slightly more stable than the tetra-ionic cluster (two bisulfate anions, two hydronium cations, and one water). With four water molecules, the tetra-ionic cluster, (HSO4−)2(H3O+)2(H2O)2, becomes as favorable as the di-ionic cluster H2SO4(HSO4−)(H3O+)(H2O)3 at 0 K. Increasing the temperature favors the undissociated clusters, and at room temperature we predict that the di-ionic species is slightly more favorable than the neutral cluster once three waters have been added to the cluster. The tetra-ionic species competes with the di-ionic species once five waters have been added to the cluster. The thermodynamics of stepwise hydration of sulfuric acid dimer is similar to that of the monomer; it is favorable up to n = 4−5 at 298 K. A much more thermodynamically favorable pathway forming sulfuric acid dimer hydrates is through the combination of sulfuric acid monomer hydrates, but the low concentration of sulfuric acid relative to water vapor at ambient conditions limits that process.
Resumo:
Cyanobacteria are photosynthetic organisms that require the absorption of light for the completion of photosynthesis. Cyanobacteria can use a variety of wavelengths of light within thevisible light spectrum in order to harvest energy for this process. Many species of cyanobacteria have light-harvesting proteins that specialize in the absorption of a small range of wavelengths oflight along the visual light spectrum; others can undergo complementary chromatic adaptation and alter these light-harvesting proteins in order to absorb the wavelengths of light that are mostavailable in a given environment. This variation in light-harvesting phenotype across cyanobacteria leads to the utilization of environmental niches based on light wavelength availability. Furthermore, light attenuation along the water column in an aquatic system also leads to the formation of environmental niches throughout the vertical water column. In order to better understand these niches based on light wavelength availability, we studied the compositionof cyanobacterial genera at the surface and depth of Lake Chillisquaque at three time points throughout the year: September 2009, May 2010, and July 2010. We found that cyanobacterialgenera composition changes throughout the year as well as with physical location in the water column. Additionally, given the light attenuation noted throughout the Lake Chillisquaque, we are able to conclude that light is a major selective factor in the community composition of Lake Chillisquaque.
Resumo:
Clay minerals have a fundamental importance in many processes in soils and sediments such as the bioavailability of nutrients, water retention, the adsorption of common pollutants, and the formation of an impermeable barrier upon swelling. Many of the properties of clay minerals are due to the unique environment present at the clay mineral/water interface. Traditional techniques such as X-ray diffraction (XRD) and absorption isotherms have provided a wealth of information about this interface but have suffered from limitations. The methods and results presented herein are designed to yield new experimental information about the clay mineral/water interface.A new method of studying the swelling dynamics of clay minerals was developed using in situ atomic force microscopy (AFM). The preliminary results presented here demonstrate that this technique allows one to study individual clay mineral unit layers, explore the natural heterogeneities of samples, and monitor swelling dynamics of clay minerals in real time. Cation exchange experiments were conducted monitoring the swelling change of individual nontronite quasi-crystals as the chemical composition of the surrounding environment was manipulated several times. A proof of concept study has shown that the changes in swelling are from the exchange of interlayer cations and not from the mechanical force of replacing the solution in the fluid cell. A series of attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR) experiments were performed to gain a better understanding of the organization of water within the interlayer region of two Fe-bearing clay minerals. These experiments made use of the Subtractive Kramers-Kronig (SKK) Transform and the calculation of difference spectra to obtain information about interfacial water hidden within the absorption bands of bulk water. The results indicate that the reduction of structural iron disrupts the organization of water around a strongly hydrated cation such as sodium as the cation transitions from an outer-sphere complex with the mineral surface to an inner-sphere complex. In the case of a less strongly hydrated cation such as potassium, reduction of structural iron actually increases the ordering of water molecules at the mineral surface. These effects were only noticed with the reduction of iron in the tetrahedral sheet close to the basal surface where the increased charge density is localized closer to the cations in the interlayer.