3 resultados para Precipitate coarsening
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The fracture properties of high-strength spray-formed Al alloys were investigated, with consideration of the effects of elemental additions such as zinc,manganese, and chromium and the influence of the addition of SiC particulate. Fracture resistance values between 13.6 and 25.6 MPa (m)1/2 were obtained for the monolithic alloys in the T6 and T7 conditions, respectively. The alloys with SiC particulate compared well and achieved fracture resistance values between 18.7 and 25.6 MPa (m)1/2. The spray-formed materials exhibited a loss in fracture resistance (KI) compared to ingot metallurgy 7075 alloys but had an improvedperformance compared to high-solute powder metallurgy alloys of similar composition. Characterization of the fracture surfaces indicated a predominantly intergranular decohesion, possibly facilitated by the presence of incoherent particles at the grain boundary regions and by the large strength differentialbetween the matrix and precipitate zone. It is believed that at the slip band-grain boundary intersection, particularly in the presence of large dispersoids and/or inclusions, microvoid nucleation would be significantly enhanced. Differences in fracture surfaces between the alloys in the T6 and T7 condition were observed and are attributed to inhomogeneous slip distribution, which results in strain localization at grain boundaries. The best overall combination of fracture resistance properties were obtained for alloys with minimum amounts of chromium and manganese additions.
Resumo:
In this study I will endeavor to show that the American system of health care violates any conception of distributive justice understood as equality of opportunity. This system fails to provide equal access through a lack of universal insurance, a consumer driven conception of quality, and a system wide focus on cost control, leaving millions of Americans exposed to the ravages of disease. However, if health is understood as an antecedent for one's ability to function across a number of categories that have been objectively deemed as vital to engage in a life that is fully human than the commitment our nation has to the protection of fair equality of opportunity, established by our adoption of a Rawlsian conception of justice, necessitates a revision of our nation's conception of quality to encapsulate health outcomes as well as the advent of a system of universal coverage. Quality care will come to be understood as care that returns to the patient the ability to function across those categories of functioning that illness has jeopardized, and this conception of quality will precipitate system wide reform geared at the creation of positive health outcomes. This paper will articulate this argument by reconstructing and synthesizing precepts from the contemporary philosophical sources and then applying these to the practical workings of our healthcare system, while concurrently demonstrating that a system of distributive justice is compatible with the creation of a universal system of healthcare.
Resumo:
Tropical Storm Lee produced 25-36 cm of rainfall in north-central Pennsylvania on September 4th through 8th of 2011. Loyalsock Creek, Muncy Creek, and Fishing Creek experienced catastrophic flooding resulting in new channel formation, bank erosion, scour of chutes, deposition/reworking of point bars and chute bars, and reactivation of the floodplain. This study was created to investigate aspects of both geomorphology and sedimentology by studying the well-exposed gravel deposits left by the flood, before these features are removed by humans or covered by vegetation. By recording the composition of gravel bars in the study area and creating lithofacies models, it is possible to understand the 2011 flooding. Surficial clasts on gravel bars are imbricated, but the lack of imbrication and high matrix content of sediments at depth suggests that surface imbrication of the largest clasts took place during hyperconcentrated flow (40-70% sediment concentration). The imbricated clasts on the surface are the largest observed within the bars. The lithofacies recorded are atypical for mixed-load stream lithofacies and more similar to glacial outburst flood lithofacies. This paper suggests that the accepted lithofacies model for mixed-load streams with gravel bedload may not always be useful for interpreting depositional systems. A flume study, which attempted to duplicate the stratigraphy recorded in the field, was run in order to better understand hyperconcentrated flows in the study area. Results from the study in the Bucknell Geology Flume Laboratory indicate that surficial imbrication is possible in hyperconcentrated conditions. After flooding the flume to entrain large amounts of sand and gravel, deposition of surficially imbricated gravel with massive or upward coarsening sedimentology occurred. Imbrication was not observed at depth. These experimental flume deposits support our interpretation of the lithofacies discovered in the field. The sizes of surficial gravel bar clasts show clear differences between chute and point bars. On point bars, gravels fine with increasing distance from the channel. Fining also occurs at the downstream end of point bars. In chute deposits, dramatic fining occurs down the axis of the chute, and lateral grain sizes are nearly uniform. Measuring the largest grain size of sandstone clasts at 8-11 kilometer intervals on each river reveals anomalies in the downstream fining trends. Gravel inputs from bedrock outcrops, tributaries, and erosion of Pleistocene outwash terraces may explain observed variations in grain size along streams either incised into the Appalachian Plateau or located near the Wisconsinan glacial boundary. Atomic Mass Spectrometry (AMS) radiocarbon dating of sediment from recently scoured features on Muncy Creek and Loyalsock Creek returned respective ages of 500 BP and 2490 BP. These dates suggest that the recurrence interval of the 2011 flooding may be several hundred to several thousand years. This geomorphic interval of recurrence is much longer then the 120 year interval calculated by the USGS using historical stream gauge records.