2 resultados para Plum Island Animal Disease Laboratory.

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous studies have shown that animals have a sense of quantity and can distinguish between relative amounts. The concepts of relative numerousness, estimation, and subitizing are well established in species as diverse as chimpanzees and salamanders. Mobile animals have practical use for an understanding of number in common situations such as predation, mating, and competition. However, the ability to identify discrete quantities has only been firmly established in humans. The purpose of this study was to test for such “absolute numerousness” judgments in three lion-tailed macaques (Macaca silenus), a non-human primate. The three macaques tested had previously been trained on a computerized matchto- sample (MTS) task using geometric shapes. In this study, they were introduced to a MTS task containing a numerical cue, which required the monkeys to match stimuli containing either one or two items for rewards. If monkeys were successful at the initial matching task, they were tested with stimuli in which the position of the items and then the surface area of the items was controlled. If the monkeys could match successfully without using these non-numerical cues, they would demonstrate the capability to make absolute numerousness judgments. None of the monkeys matched successfully using the numerical cue, so no evidence of absolute numerosity was found. Each macaque progressed through the experiment in an individualized manner, attempting a variety of strategies to obtain rewards. These included side preferences and an alternating-side strategy that were unrelated to the numerical cues in the stimuli. When it became clear that the monkeys were not matching based on a stimulus-based cue, they were tested again on matching geometric shapes. All three macaques stopped using their alternate strategies and were able to match shapes successfully, demonstrating that they were still capable of completing the matching task. The data suggest that the monkeys could not transfer this ability to the numerical stimuli. This indicates that the macaques lack a sense of exact quantity, or that they could not recognize the numerical cues in the stimuli as being relevant to the task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Definitive diagnosis of the bat disease white-nose syndrome (WNS) requires histologic analysis to identify the cutaneous erosions caused by the fungal pathogen Pseudogymnoascus [formerly Geomyces] destructans (Pd). Gross visual inspection does not distinguish bats with or without WNS, and no nonlethal, on-site, preliminary screening methods are available for WNS in bats. We demonstrate that long-wave ultraviolet (UV) light (wavelength 366-385 nm) elicits a distinct orange yellow fluorescence in bat-wing membranes (skin) that corresponds directly with the fungal cupping erosions in histologic sections of skin that are the current gold standard for diagnosis of WNS. Between March 2009 and April 2012, wing membranes from 168 North American bat carcasses submitted to the US Geological Survey National Wildlife Health Center were examined with the use of both UV light and histology. Comparison of these techniques showed that 98.8% of the bats with foci of orange yellow wing fluorescence (n=80) were WNS-positive based on histologic diagnosis; bat wings that did not fluoresce under UV light (n=88) were all histologically negative for WNS lesions. Punch biopsy samples as small as 3 mm taken from areas of wing with UV fluorescence were effective for identifying lesions diagnostic for WNS by histopathology. In a nonlethal biopsy-based study of 62 bats sampled (4-mm diameter) in hibernacula of the Czech Republic during 2012, 95.5% of fluorescent (n=22) and 100% of nonfluorescent (n=40) wing samples were confirmed by histopathology to be WNS positive and negative, respectively. This evidence supports use of long-wave UV light as a nonlethal and field-applicable method to screen bats for lesions indicative of WNS. Further, UV fluorescence can be used to guide targeted, nonlethal biopsy sampling for follow-up molecular testing, fungal culture analysis, and histologic confirmation of WNS.