4 resultados para Plants -- Effect of atmospheric carbon dioxide on

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering students continue to develop and show misconceptions due to prior knowledge and experiences (Miller, Streveler, Olds, Chi, Nelson, & Geist, 2007). Misconceptions have been documented in students’ understanding of heat transfer(Krause, Decker, Niska, Alford, & Griffin, 2003) by concept inventories (e.g., Jacobi,Martin, Mitchell, & Newell, 2003; Nottis, Prince, Vigeant, Nelson, & Hartsock, 2009). Students’ conceptual understanding has also been shown to vary by grade point average (Nottis et al., 2009). Inquiry-based activities (Nottis, Prince, & Vigeant, 2010) haveshown some success over traditional instructional methods (Tasoglu & Bakac, 2010) in altering misconceptions. The purpose of the current study was to determine whether undergraduate engineering students’ understanding of heat transfer concepts significantly changed after instruction with eight inquiry-based activities (Prince & Felder, 2007) supplementing instruction and whether students’ self reported GPA and prior knowledge, as measured by completion of specific engineering courses, affected these changes. The Heat and Energy Concept Inventory (Prince, Vigeant, & Nottis, 2010) was used to assess conceptual understanding. It was found that conceptual understanding significantly increased from pre- to post-test. It was also found that GPA had an effect on conceptual understanding of heat transfer; significant differences were found in post-test scores onthe concept inventory between GPA groups. However, there were mixed results when courses previously taken were analyzed. Future research should strive to analyze how prior knowledge effects conceptual understanding and aim to reduce the limitations of the current study such as, sampling method and methods of measuring GPA and priorknowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Success in any field depends on a complex interplay among environmental and personal factors. A key set of personal factors for success in academic settings are those associated with self-regulated learners (SRL). Self-regulated learners choose their own goals, select and organize their learning strategies, and self-monitor their effectiveness. Behaviors and attitudes consistent with self-regulated learning also contribute to self-confidence, which may be important for members of underrepresented groups such as women in engineering. This exploratory study, drawing on the concept of "critical mass", examines the relationship between the personal factors that identify a self-regulated learner and the environmental factors related to gender composition of engineering classrooms. Results indicate that a relatively student gender-balanced classroom and gender match between students and their instructors provide for the development of many adaptive SRL behaviors and attitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of our study is to investigate the effects of chronic estrogen administration on same-sex interactions during exposure to a social stressor and on oxytocin (OT) levels in prairie voles (Microtus orchrogaster). Estrogen and OT are two hormones known to be involved with social behavior and stress. Estogen is involved in the transcription of OT and its receptor. Because of this, it is generally thought that estrogen upregulates OT, but evidence to support this assumption is weak. While estrogen has been shown to either increase or decrease stress, OT has been shown to have stress-dampening properties. The goal of our experiment is to determine how estrogen affects OT levels as well as behavior in a social stressor in the voles. In addition, estrogen is required for many opposite-sex interactions, but little is known about its influence on same-sex interactions. We hypothesized that prairie voles receiving chronic estrogen injections would show an increase in OT levels in the brain and alter behavior in response to a social stressor called the resident-intruder test. To test this hypothesis, 73 female prairie voles were ovariectomized and then administered daily injections of estrogen (0.05 ¿g in peanut oil, s.c.) or vehicle for 8 days. On the final day of injections, half of the voles were given the resident-intruder test, a stressful 5 min interaction with a same-sex stranger. Their behavior was video-recorded. These animals were then sacrificed either 10 minutes or 60 minutes after the conclusion of the test. Half of the animals (no stress group) were not given the resident-intruder test. After sacrifice, trunk blood and brains were collected from the animals. Videos of the resident-intruder tests were analyzed for pro-social and aggressive behavior. Density of OT-activated neurons in the brain was measured via pixel count using immunohistochemistry. No differences were found in pro-social behavior (focal sniffing, p = 0.242; focal initiated sniffing p = 0.142; focal initiated sniffing/focal sniffing, p = 0.884) or aggressive behavior (total time fighting, p= 0.763; number of fights, p= 0.148; number of strikes, p = 0.714). No differences were found in activation of OT neurons in the brain, neither in the anterior paraventricular nucleus (PVN) (pixel count p= 0.358; % area that contains pixelated neurons p = 0.443) nor in the medial PVN (pixel count p= 0.999; % area that contains pixelated neurons p = 0.916). These results suggest that estrogen most likely does not directly upregulate OT and that estrogen does not alter behavior in stressful social interactions with a same-sex stranger. Estrogen may prepare the animal to respond to OT, instead of increasing the production of the peptide itself, suggesting that we need to shift the framework in which we consider estrogen and OT interactions.