2 resultados para Physiological optics

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluctuations of food availability, habitat quality, and environmental conditions throughout the year have been implicated in the breeding success and survival of migratory birds. Levels of circulating corticosterone, the hormone involved in energy balance and the stress response in birds, are also affected by fluctuations in these variables, and also play a role in self-maintenance and survival. In addition to changes in behaviors and resource allocation, the metabolic effects of corticosterone increase the amount of free radicals in the body, which can cause oxidative stress and damage lipids and DNA. In this thesis, I assessed if diet and physiology during the breeding and non-breeding seasons contributed to the reproductive success, survival, and oxidative stress of a long-lived migratory seabird, Leach’s storm-petrel (Oceanodroma leucorhoa). I tested the hypotheses that 1.) diet and physiology throughout the breeding and non-breeding seasons predict reproductive effort; and 2.) corticosterone affects telomere length, a measure of oxidative damage. Through analyses of stable isotopes, corticosterone, and antioxidant capacity, I found that although there was variation in these measures of diet and physiology within the population, none of these factors during the breeding or non-breeding seasons correlated with reproductive effort or success. I also found that feather and plasma corticosterone did not predict telomere length. The life history strategies of Leach’s storm-petrels appear to be complex, and many factors likely contribute to self-maintenance and the decision to breed. Long-term monitoring of these variables may help identify relationships between trends in oceanographic variables during both the breeding and non-breeding seasons with reproductive effort and success, and survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White-nose syndrome (WNS) is a disease that has caused the mass mortality of hibernating bat species. Since its first discovery in the winter of 2006-2007, an estimated five million bats or more have been killed. Although infection with Pseudogymnoascus destructans (Pd, the causative agent of WNS) does not always result in death, bats that survive Pd infection may experience fitness consequences. To understand the physiological consequences of WNS, I measured reproductive rates of free-ranging hibernating bat species of the Northeastern United States. In addition, captive little brown myotis (Myotis lucifugus) bats that were infected by Pd but survived (¿WNS survivors¿) and uninfected bats were studied in order to understand the potential consequences (e.g., lower reproductive rates, decreased ability to heal wounds, degradation of wing tissue, and altered metabolic rates) of surviving WNS. No differences in reproductive rates were found between WNS-survivors and uninfected bats in either the field or in captivity. In addition, wound healing was not affected by Pd infection. However, wing tissue degradation was worse for little brown myotis 19 days post-hibernation, and mass specific metabolic rate (MSMR) was significantly higher for those infected with Pd 22 days post-hibernation. While it is clear that these consequences are a direct result of Pd infection, further research investigating the long-term consequences for both mothers and pups is necessary.