9 resultados para Photography -- Digital techniques
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The purpose of the study was to examine the effect of teacher experience on student progress and performance quality in an introductory applied lesson. Nine experienced teachers and 15 pre-service teachers taught an adult beginner to play ‘Mary Had a Little Lamb’ on a wind instrument. The lessons were videotaped for subsequent analysis of teaching behaviors and performance achievement. Following instruction, a random sample of teachers was interviewed about their perceptions of the lesson. A panel of adjudicators rated final pupil performances. No significant difference was found between pupils taught by experienced and pre-service teachers in the quality of their final performance. Systematic observation of the videotaped lessons showed that participant teachers provided relatively frequent and highly positive reinforcement during the lessons. Pupils of experienced teachers talked significantly more during the lessons than did pupils of pre-service teachers. Pre-service teachers modeled significantly more on their instruments than did experienced teachers.
Digital signal processing and digital system design using discrete cosine transform [student course]
Resumo:
The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.
Resumo:
With the United States‘ entry into the Second World War, the word ?censorship? was seen largely as antithetical to, rather than a necessary counterpart to, victory among Americans. People did not want to be censored in their writing, photographs or speech,but it proved to be necessary even before the war began, in order to protect government secrets and the people on the home-front from scenes that were too disturbing. Even before the war had officially begun, there were problems with censorship among journalists and newspapers. The initial response of outrage in reference to censorship in the United States was common among journalists, newspapers, magazines, and radio news; nevertheless, there was a necessity for censorship among Americans, on the home frontand the front lines, and it would be tolerated throughout the war to ensure that enemies of America did not gain access to information that would assist in a defeat of the United States in the Second World War. The research I have conducted has dealt with the censorship of combat photography during World War II, in conjunction with the ethics that were in play at the time that affected the censors. Through exploring the work of three combat photographers — Tony Vaccaro, James R. Stephens and Charles E. Sumners — I wasable to effectively construct an explanatory ethical history of these three men. Research on the censorship and effects it had on the United States brought me to three distinctareas of censorship and ethics that would be explored: (1) the restrictions and limitations enforced by the Office of Censorship, (2) a general overview of war and photography as it influenced the soldiers and their families on the home-front, (3) and the combat photographers and personal and military censorship that influenced their work. Although their work was censored both by the military and the government, these men saw the war in a different light that remained with them long after the battles and war had ceased.Using the narratives of Tony Vaccaro, Charles E. Sumners and James R. Stephens as means for more in depth research, this thesis strives to create lenses through which to view the history and ethics of censorship that shaped combat photography during the Second World War and the images to which we refer as representative of that war today.
Resumo:
The Simulation Automation Framework for Experiments (SAFE) streamlines the de- sign and execution of experiments with the ns-3 network simulator. SAFE ensures that best practices are followed throughout the workflow a network simulation study, guaranteeing that results are both credible and reproducible by third parties. Data analysis is a crucial part of this workflow, where mistakes are often made. Even when appearing in highly regarded venues, scientific graphics in numerous network simulation publications fail to include graphic titles, units, legends, and confidence intervals. After studying the literature in network simulation methodology and in- formation graphics visualization, I developed a visualization component for SAFE to help users avoid these errors in their scientific workflow. The functionality of this new component includes support for interactive visualization through a web-based interface and for the generation of high-quality, static plots that can be included in publications. The overarching goal of my contribution is to help users create graphics that follow best practices in visualization and thereby succeed in conveying the right information about simulation results.
Resumo:
Water held in the unsaturated zone is important for agriculture and construction and is replenished by infiltrating rainwater. Monitoring the soil water content of clay soils using ground-penetrating radar (GPR) has not been researched, as clay soils cause attenuation of GPR signal. In this study, GPR common-midpoint soundings (CMPs) are used in the clayey soils of the Miller Run floodplain to monitor changes in the soil water content (SWC) before and after rainfall events. GPR accomplishes this task because increases in water content will increase the dielectric constant of the subsurface material, and decrease the velocity of the GPR wave. Using an empirical relationship between dielectric constant and SWC, the Topp relation, we are able to calculate a SWC from these velocity measurements. Non-invasive electromagnetics, resistivity, and seismic were performed, and from these surveys, the layering at the field site was delineated. EM characterized the horizontal variation of the soil, allowing us to target the most clay rich area. At the CMP location, resistivity indicates the vertical structure of the subsurface consists of a 40 cm thick layer with a resistivity of 100 ohm*m. Between 40 cm and 1.5 m is a layer with a resistivity of 40 ohm*m. The thickness estimates were confirmed with invasive auger and trenching methods away from the CMP location. GPR CMPs were collected relative to a July 2013 and September 2013 storm. The velocity observations from the CMPs had a precision of +/- 0.001 m/ns as assessed by repeat analysis. In the case of both storms, the GPR data showed the expected relationship between the rainstorms and calculated SWC, with the SWC increasing sharply after the rainstorm and decreasing as time passed. We compared these data to auger core samples collected at the same time as the CMPs were taken, and the volumetric analysis of the cores confirmed the trend seen in the GPR, with SWC values between 3 and 5 percent lower than the GPR estimates. Our data shows that we can, with good precision, monitor changes in the SWC of conductive soils in response to rainfall events, despite the attenuation induced by the clay.
Resumo:
Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.