15 resultados para Pennsylvania. William, 1644-1718.
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
In an effort to understand some of the ways that accountability-based reform efforts have influenced teacher education, this article details the politics of accountability in Pennsylvania that motivated sweeping changes in the policies governing teacher preparation in 2006. This case study provides a poignant example of the kind of complex accountability systems now being constructed across the United States in an effort to change teacher preparation. By analyzing primary documents including the legal statutes governing teacher preparation in Pennsylvania, correspondence from the Pennsylvania Department of Education, related newsletters, memos, reports, transcripts of meetings, and testimony before the Pennsylvania House of Representatives, the complex nature of the conflicts underlying the development and implementation of teacher education reform is brought into focus. The study's findings suggest that a deep and uncritical acceptance of accountability-based teacher education reform on the part of educational policy makers is likely to do more harm than good. The article concludes by outlining a framework for developing more intelligent measures of accountability that might preserve professional autonomy and judgment.
Resumo:
Examined the amount of money bet during a week of Pennsylvania's Daily Number game. In this game, players receive a predetermined payoff for picking the 3-digit number (000 to 999) drawn on that day. The betting distribution was distinctly nonuniform. Several betting patterns were identified, such as picking triples and avoiding double 9s. In addition, 121 adults and 215 students were asked to rate selected numbers for randomness, luckiness, and perceived history of winning; to categorize numbers; and to free associate to numbers. It is proposed that people seem to choose highly patterned, available, and/or "lucky" numbers. People apparently do not bet numbers that reflect the random process of the game (do not utilize a representativeness heuristic).
Resumo:
This thesis assesses relationships between vegetation and topography and the impact of human tree-cutting on the vegetation of Union County during the early historical era (1755-1855). I use early warrant maps and forestry maps from the Pennsylvania historical archives and a warrantee map from the Union County courthouse depicting the distribution of witness trees and non-tree surveyed markers (posts and stones) in early European settlement land surveys to reconstruct the vegetation and compare vegetation by broad scale (mountains and valleys) and local scale (topographic classes with mountains and valleys) topography. I calculated marker density based on 2 km x 2 km grid cells to assess tree-cutting impacts. Valleys were mostly forests dominated by white oak (Quercus alba) with abundant hickory (Carya spp.), pine (Pinus spp.), and black oak (Quercus velutina), while pine dominated what were mostly pine-oak forests in the mountains. Within the valleys, pine was strongly associated with hilltops, eastern hemlock (Tsuga canadensis) was abundant on north slopes, hickory was associated with south slopes, and riparian zones had high frequencies of ash (Fraxinus spp.) and hickory. In the mountains, white oak was infrequent on south slopes, chestnut (Castanea dentata) was more abundant on south slopes and ridgetops than north slopes and mountain coves, and white oak and maple (Acer spp.) were common in riparian zones. Marker density analysis suggests that trees were still common over most of the landscape by 1855. The findings suggest there were large differences in vegetation between valleys and mountains due in part to differences in elevation, and vegetation differed more by topographic classes in the valleys than in the mountains. Possible areas of tree-cutting were evenly distributed by topographic classes, suggesting Europeans settlers were clearing land and harvesting timber in most areas of Union County.
Resumo:
Cyanobacteria are photosynthetic organisms that require the absorption of light for the completion of photosynthesis. Cyanobacteria can use a variety of wavelengths of light within thevisible light spectrum in order to harvest energy for this process. Many species of cyanobacteria have light-harvesting proteins that specialize in the absorption of a small range of wavelengths oflight along the visual light spectrum; others can undergo complementary chromatic adaptation and alter these light-harvesting proteins in order to absorb the wavelengths of light that are mostavailable in a given environment. This variation in light-harvesting phenotype across cyanobacteria leads to the utilization of environmental niches based on light wavelength availability. Furthermore, light attenuation along the water column in an aquatic system also leads to the formation of environmental niches throughout the vertical water column. In order to better understand these niches based on light wavelength availability, we studied the compositionof cyanobacterial genera at the surface and depth of Lake Chillisquaque at three time points throughout the year: September 2009, May 2010, and July 2010. We found that cyanobacterialgenera composition changes throughout the year as well as with physical location in the water column. Additionally, given the light attenuation noted throughout the Lake Chillisquaque, we are able to conclude that light is a major selective factor in the community composition of Lake Chillisquaque.
Resumo:
The hydraulic fracturing of the Marcellus Formation creates a byproduct known as frac water. Five frac water samples were collected in Bradford County, PA. Inorganic chemical analysis, field parameters analysis, alkalinity titrations, total dissolved solids(TDS), total suspended solids (TSS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were conducted on each sample to characterize frac water. A database of frac water chemistry results from across the state of Pennsylvania from multiple sources was compiled in order to provide the public and research communitywith an accurate characterization of frac water. Four geochemical models were created to model the reactions between frac water and the Marcellus Formation, Purcell Limestone, and the oil field brines presumed present in the formations. The average concentrations of chloride and TDS in the five frac water samples were 1.1 �± 0.5 x 105 mg/L (5.5X average seawater) and 140,000 mg/L (4X average seawater). BOD values for frac water immediately upon flow back were over 10X greater than the BOD of typical wastewater, but decreased into the range of typical wastewater after a short period of time. The COD of frac water decreases dramatically with an increase in elapsed time from flow back, but remain considerably higher than typicalwastewater. Different alkalinity calculation methods produced a range of alkalinity values for frac water: this result is most likely due to high concentrations of aliphatic acid anions present in the samples. Laboratory analyses indicate that the frac watercomposition is quite variable depending on the companies from which the water was collected, the geology of the local area, and number of fracturing jobs in which the frac water was used, but will require more treatment than typical wastewater regardless of theprecise composition of each sample. The geochemical models created suggest that the presence of organic complexes in an oil field brine and Marcellus Formation aid in the dissolution of ions such as bariumand strontium into the solution. Although equilibration reactions between the Marcellus Formation and the slickwater account for some of the final frac water composition, the predominant control of frac water composition appears to be the ratio of the mixture between the oil field brine and slickwater. The high concentration of barium in the frac water is likely due to the abundance of barite nodules in the Purcell Limestone, and the lack of sulfate in the frac water samples is due to the reducing, anoxic conditions in the earth's subsurface that allow for the degassing of H2S(g).
Resumo:
Tropical Storm Lee produced 25-36 cm of rainfall in north-central Pennsylvania on September 4th through 8th of 2011. Loyalsock Creek, Muncy Creek, and Fishing Creek experienced catastrophic flooding resulting in new channel formation, bank erosion, scour of chutes, deposition/reworking of point bars and chute bars, and reactivation of the floodplain. This study was created to investigate aspects of both geomorphology and sedimentology by studying the well-exposed gravel deposits left by the flood, before these features are removed by humans or covered by vegetation. By recording the composition of gravel bars in the study area and creating lithofacies models, it is possible to understand the 2011 flooding. Surficial clasts on gravel bars are imbricated, but the lack of imbrication and high matrix content of sediments at depth suggests that surface imbrication of the largest clasts took place during hyperconcentrated flow (40-70% sediment concentration). The imbricated clasts on the surface are the largest observed within the bars. The lithofacies recorded are atypical for mixed-load stream lithofacies and more similar to glacial outburst flood lithofacies. This paper suggests that the accepted lithofacies model for mixed-load streams with gravel bedload may not always be useful for interpreting depositional systems. A flume study, which attempted to duplicate the stratigraphy recorded in the field, was run in order to better understand hyperconcentrated flows in the study area. Results from the study in the Bucknell Geology Flume Laboratory indicate that surficial imbrication is possible in hyperconcentrated conditions. After flooding the flume to entrain large amounts of sand and gravel, deposition of surficially imbricated gravel with massive or upward coarsening sedimentology occurred. Imbrication was not observed at depth. These experimental flume deposits support our interpretation of the lithofacies discovered in the field. The sizes of surficial gravel bar clasts show clear differences between chute and point bars. On point bars, gravels fine with increasing distance from the channel. Fining also occurs at the downstream end of point bars. In chute deposits, dramatic fining occurs down the axis of the chute, and lateral grain sizes are nearly uniform. Measuring the largest grain size of sandstone clasts at 8-11 kilometer intervals on each river reveals anomalies in the downstream fining trends. Gravel inputs from bedrock outcrops, tributaries, and erosion of Pleistocene outwash terraces may explain observed variations in grain size along streams either incised into the Appalachian Plateau or located near the Wisconsinan glacial boundary. Atomic Mass Spectrometry (AMS) radiocarbon dating of sediment from recently scoured features on Muncy Creek and Loyalsock Creek returned respective ages of 500 BP and 2490 BP. These dates suggest that the recurrence interval of the 2011 flooding may be several hundred to several thousand years. This geomorphic interval of recurrence is much longer then the 120 year interval calculated by the USGS using historical stream gauge records.
Resumo:
Using survey and interview data gathered from educators and educational administrators, we investigate school and community impacts of unconventional gas extraction within Pennsylvania's Marcellus Shale region. Respondents in areas with high levels of drilling are significantly more likely to perceive the effects of local economic gains, but also report increased inequality, heightened vulnerability of disadvantaged community members, and pronounced strains on local infrastructure. As community stakeholders in positions of local leadership, school leaders in areas experiencing Marcellus Shale natural gas extraction often face multiple decision-making dilemmas. These dilemmas occur in the context of incomplete information and rapid, unpredictable community change involving the emergence of both new opportunities and new insecurities.
Resumo:
Laurentide glaciation during the early Pleistocene (~970 ka) dammed the southeast-flowing West Branch of the Susquehanna River (WBSR), scouring bedrock and creating 100-km-long glacial Lake Lesley near the Great Bend at Muncy, Pennsylvania (Ramage et al., 1998). Local drill logs and well data indicate that subsequent paleo-outwash floods and modern fluvial processes have deposited as much as 30 meters of alluvium in this area, but little is known about the valley fill architecture and the bedrock-alluvium interface. By gaining a greater understanding of the bedrock-alluvium interface the project will not only supplement existing depth to bedrock information, but also provide information pertinent to the evolution of the Muncy Valley landscape. This project determined if variations in the thickness of the valley fill were detectable using micro-gravity techniques to map the bedrock-alluvium interface. The gravity method was deemed appropriate due to scale of the study area (~30 km2), ease of operation by a single person, and the available geophysical equipment. A LaCoste and Romberg Gravitron unit was used to collect gravitational field readings at 49 locations over 5 transects across the Muncy Creek and Susquehanna River valleys (approximately 30 km2), with at least two gravity base stations per transect. Precise latitude, longitude and ground surface elevation at each location were measured using an OPUS corrected Trimble RTK-GPS unit. Base stations were chosen based on ease of access due to the necessity of repeat measurements. Gravity measurement locations were selected and marked to provide easy access and repeat measurements. The gravimeter was returned to a base station within every two hours and a looping procedure was used to determine drift and maximize confidence in the gravity measurements. A two-minute calibration reading at each station was used to minimize any tares in the data. The Gravitron digitally recorded finite impulse response filtered gravity measurements every 20 seconds at each station. A measurement period of 15 minutes was used for each base station occupation and a minimum of 5 minutes at all other locations. Longer or multiple measurements were utilized at some sites if drift or other externalities (i.e. train or truck traffic) were effecting readings. Average, median, standard deviation and 95% confidence interval were calculated for each station. Tidal, drift, latitude, free-air, Bouguer and terrain corrections were then applied. The results show that the gravitational field decreases as alluvium thickness increases across the axes of the Susquehanna River and Muncy Creek valleys. However, the location of the gravity low does not correspond with the present-day location of the West Branch of the Susquehanna River (WBSR), suggesting that the WBSR may have been constrained along Bald Eagle Mountain by a glacial lobe originating from the Muncy Creek Valley to the northeast. Using a 3-D inversion model, the topography of the bedrock-alluvium interface was determined over the extent of the study area using a density contrast of -0.8 g/cm3. Our results are consistent with the bedrock geometry of the area, and provide a low-cost, non-invasive and efficient method for exploring the subsurface and for supplementing existing well data.
Resumo:
Two competing models exist for the formation of the Pennsylvania salient, a widely studied area of pronounced curvature in the Appalachian mountain belt. The viability of these models can be tested by compiling and analyzing the patterns of structures within the general hinge zone of the Pennsylvania salient. One end-member model suggests a NW-directed maximum shortening direction and no rotation through time in the culmination. An alternative model requires a two-phase development of the culmination involving NNW-directed maximum shortening overprinted by WNW-directed maximum shortening. Structural analysis at 22 locations throughout the Valley and Ridge and southern Appalachian Plateau Provinces of Pennsylvania are used to constrain orientations of the maximum shortening direction and establish whether these orientations have rotated during progressive deformation in the Pennsylvania salient's hinge. Outcrops of Paleozoic sedimentary rocks contain several orders of folds, conjugate faults, steeply dipping strike-slip faults, joints, conjugate en echelon gash vein arrays, spaced cleavage, and grain-scale finite strain indicators. This suite of structures records a complex deformation history similar to the Bear Valley sequence of progressive deformation. The available structural data from the Juniata culmination do not show a consistent temporal rotation of shortening directions and generally indicate uniform,
Resumo:
The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.