4 resultados para PHASE PHOTOCATALYZED REACTIONS

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of CCSD(T) single-point calculations on MP4(SDQ) geometries and the W1 model chemistry method have been used to calculate ΔH° and ΔG° values for the deprotonation of 17 gas-phase reactions where the experimental values have reported accuracies within 1 kcal/mol. These values have been compared with previous calculations using the G3 and CBS model chemistries and two DFT methods. The most accurate CCSD(T) method uses the aug-cc-pVQZ basis set. Extrapolation of the aug-cc-pVTZ and aug-cc-pVQZ results yields the most accurate agreement with experiment, with a standard deviation of 0.58 kcal/mol for ΔG° and 0.70 kcal/mol for ΔH°. Standard deviations from experiment for ΔG° and ΔH° for the W1 method are 0.95 and 0.83 kcal/mol, respectively. The G3 and CBS-APNO results are competitive with W1 and are much less expensive. Any of the model chemistry methods or the CCSD(T)/aug-cc-pVQZ method can serve as a valuable check on the accuracy of experimental data reported in the National Institutes of Standards and Technology (NIST) database.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The G3, CBS-QB3, and CBS-APNO methods have been used to calculate ΔH and ΔG values for deprotonation of seventeen gas-phase reactions where the experimental values are reported to be accurate within one kcal/mol. For these reactions, the mean absolute deviation of these three methods from experiment is 0.84 to 1.26 kcal/mol, and the root-mean-square deviation for ΔG and ΔH is 1.43 and 1.49 kcal/mol for the CBS-QB3 method, 1.06 and 1.14 kcal/mol for the CBS-APNO method, and 1.16 and 1.28 for the G3 method. The high accuracy of these methods makes them reliable for calculating gas-phase deprotonation reactions, and allows them to serve as a valuable check on the accuracy of experimental data reported in the National Institutes of Standards and Technology database.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SVWN, BVWN, BP86, BLYP, BPW91, B3P86, B3LYP, B3PW91, B1LYP, mPW1PW, and PBE1PBE density functionals, as implemented in Gaussian 98 and Gaussian 03, were used to calculate ΔG0 and ΔH0 values for 17 deprotonation reactions where the experimental values are accurately known. The PBE1PBE and B3P86 functionals are shown to compute results with accuracy comparable to more computationally intensive compound model chemistries. A rationale for the relative performance of various functionals is explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unique features of doubly-charged stable organic ions are examined and the results correlated with experimental observations. Self-consistent field molecular orbital methods are used to compute structures and stabilities of CnH 2 2+ (n=2–9) ions which are prominent in electron impact ionization of hydrocarbon molecules. A simple curve crossing model is employed to rationalize charge transfer reactions of these ions.