2 resultados para PASSERINE BIRDS
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Animal coloration often serves as a signal to others that may communicate traits about the individual such as toxicity, status, or quality. Colorful ornaments in many animals are often honest signals of quality assessed by mates, and different colors may beproduced by different biochemical pigments. Investigations of the mechanisms responsible for variation in color expression among birds are best when including a geographically and temporally broad sample. In order to obtain such a sample, studies such as this often use museum specimens; however, in order for museum specimens toserve as an accurate replacement, they must accurately represent living birds, or we must understand the ways in which they differ. In this thesis, I investigated the link between feather corticosterone, a hormone secreted in response to stress, and carotenoid-basedcoloration in the Red-winged Blackbird (Agelaius phoeniceus) in order to explore a mechanistic link between physiological state and color expression. Male Red-winged Blackbirds with lower feather corticosterone had significantly brighter red epaulets than birds with higher feather corticosterone, while I found no significant changes in red chroma. I also performed a methodological comparison of color change in museum specimens among different pigment types (carotenoid and psittacofulvin) and pigments in different locations in the body (feather and bill carotenoids) in order to quantify colorchange over time. Carotenoids and psittacofulvins showed significant reductions in red brightness and chroma over time in the collection, and carotenoid color changed significantly faster than psittacofulvin color. Both bill and feather carotenoids showed significant reductions in red brightness and red chroma over time, but change of both red chroma and red brightness occurred at a similar rate in feathers and bills. In order to use museum specimens of ecological research on bird coloration specimen age must be accounted for before the data can be used; however, once this is accomplished, museum- based color data may be used to draw conclusions about wild populations.
Resumo:
We used a colour-space model of avian vision to assess whether a distinctive bird pollination syndrome exists for floral colour among Australian angiosperms. We also used a novel phylogenetically based method to assess whether such a syndrome represents a significant degree of convergent evolution. About half of the 80 species in our sample that attract nectarivorous birds had floral colours in a small, isolated region of colour space characterized by an emphasis on long-wavelength reflection. The distinctiveness of this 'red arm' region was much greater when colours were modelled for violet-sensitive (VS) avian vision than for the ultraviolet-sensitive visual system. Honeyeaters (Meliphagidae) are the dominant avian nectarivores in Australia and have VS vision. Ancestral state reconstructions suggest that 31 lineages evolved into the red arm region, whereas simulations indicate that an average of five or six lineages and a maximum of 22 are likely to have entered in the absence of selection. Thus, significant evolutionary convergence on a distinctive floral colour syndrome for bird pollination has occurred in Australia, although only a subset of bird-pollinated taxa belongs to this syndrome. The visual system of honeyeaters has been the apparent driver of this convergence.