2 resultados para PARABOLIC QUANTUM-WELL

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full geometry optimizations using the PM3, AM1, 3-21G∗/HF and 6-31G∗/HF levels of theory were conducted on the syn and anti conformations of cyclic3′,5′-adenosine monophosphate (cAMP). Comparison of the anti crystal structures with the semiempirical and ab initio results revealed that the ab initio results agree well with the experimental results. The results of semiempirical calculations are in qualitative agreement with experimental and ab initio values, with the exception of the glycosyl torsion angle for the anti conformer. Sugar puckering, which is not handled properly by semiempirical methods for unconstrained sugars, nucleosides, nucleotides and nucleotide base pairs, is modeled reasonably well by the semiempirical methods for cAMP. This improvement results from the constraints introduced by the cyclization of AMP to form the phosphodiester.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PM3 quantum-mechanical method has been used to study large water clusters ranging from 8 to 42 water molecules. These large clusters are built from smaller building blocks. The building blocks include cyclic tetramers, pentamers, octamers, and a pentagonal dodecahedron cage. The correlations between the strain energy resulting from bending of the hydrogen bonds formed by different cluster motifs and the number of waters involved in the cluster are discussed. The PM3 results are compared with TIP4P potential and ab initio results. The number of net hydrogen bonds per water increases with the cluster size. This places a limit on the size of clusters that would fit the Benson model of liquid water. Many of the 20-mer clusters fit the Benson model well. Calculations of the ion cluster (H20)4o(H30+)2 reveal that the m/e ratio obtainable by mass spectrometry experiments can uniquely indicate the conformation of the 20 water pentagonal dodecahedron cage present in the larger clusters.