2 resultados para PALLADIUM CATALYSIS

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a series of first-principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine. The significant decrease of the free energy barrier, ∼4 kcal/mol, is attributed to the intramolecular acid catalysis of the methyl ester hydrolysis of protonated cocaine, because the transition state structure is stabilized by the strong hydrogen bond between the carbonyl oxygen of the methyl ester moiety and the protonated tropane N. The relative magnitudes of the free energy barriers calculated for different pathways of the ester hydrolysis of protonated chair cocaine are consistent with the experimental kinetic data for cocaine hydrolysis under physiologic conditions. Similar intramolecular acid catalysis also occurs for the benzoyl ester hydrolysis of (protonated) boat cocaine in the physiologic condition, although the contribution of the intramolecular hydrogen bonding to transition state stabilization is negligible. Nonetheless, the predictability of the intramolecular hydrogen bonding could be useful in generating antibody-based catalysts that recruit cocaine to the boat conformation and an analog that elicited antibodies to approximate the protonated tropane N and the benzoyl O more closely than the natural boat conformer might increase the contribution from hydrogen bonding. Such a stable analog of the transition state for intramolecular catalysis of cocaine benzoyl-ester hydrolysis was synthesized and used to successfully elicit a number of anticocaine catalytic antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through a cross-coupling reaction, aryl phosphonates are produced in high yields when the corresponding aryl bromides are reacted with a gold phosphorylating agent in the presence of a palladium catalyst and an appropriate ligand. To the best of our knowledge, this transformation is the first example involving the transfer of a phosphonate functional group from a gold complex to palladium that has been reported. Throughout the investigation, three gold phosphorylating agents were screened for activity towards the phosphorylation of aryl bromides. Aryl bromides with electrondonating and electron-withdrawing groups were successfully employed in the crosscoupling reactions. All cross-coupling reactions were carried out in THF at room temperature (25ºC) or in a microwave reactor (CEM Discover) at 60ºC for 30 or 60 minutes. The effects of changing reaction parameters such as time, temperature, catalyst and free ligand loading have been investigated. All aryl bromide substrates tested in the cross-coupling reactions produced phosphorylated products.