2 resultados para Optical sensor systems
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Atomic magnetometry was performed at Earth's magnetic field over a free-space distance of ten meters. Two laser beams aimed at a distant alkali-vapor cell excited and detected the Rb-87 magnetic resonance, allowing the magnetic field within the cell to be interrogated remotely. Operated as a driven oscillator, the magnetometer measured the geomagnetic field with less than or similar to 3.5 pT precision in a similar to 2 s data acquisition; this precision was likely limited by ambient field fluctuations. The sensor was also operated in self-oscillating mode with a 5.3 pT root Hz noise floor. Further optimization will yield a high-bandwidth, fully remote magnetometer with sub-pT sensitivity. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747206]
Resumo:
Energy transfer between the interacting waves in a distributed Brillouin sensor can result in a distorted measurement of the local Brillouin gain spectrum, leading to systematic errors. It is demonstrated that this depletion effect can be precisely modelled. This has been validated by experimental tests in an excellent quantitative agreement. Strict guidelines can be enunciated from the model to make the impact of depletion negligible, for any type and any length of fiber. (C) 2013 Optical Society of America