3 resultados para Operational and network efficiency

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that ‘‘lotic’’ shell shapes are weaker than ‘‘lentic’’ shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. ‘‘Lotic’’ shell shapes produced significantly higher stresses than ‘‘lentic’’ shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Simulation Automation Framework for Experiments (SAFE) is a project created to raise the level of abstraction in network simulation tools and thereby address issues that undermine credibility. SAFE incorporates best practices in network simulationto automate the experimental process and to guide users in the development of sound scientific studies using the popular ns-3 network simulator. My contributions to the SAFE project: the design of two XML-based languages called NEDL (ns-3 Experiment Description Language) and NSTL (ns-3 Script Templating Language), which facilitate the description of experiments and network simulationmodels, respectively. The languages provide a foundation for the construction of better interfaces between the user and the ns-3 simulator. They also provide input to a mechanism which automates the execution of network simulation experiments. Additionally,this thesis demonstrates that one can develop tools to generate ns-3 scripts in Python or C++ automatically from NSTL model descriptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimensional modeling, GT-Power in particular, has been used for two related purposes-to quantify and understand the inaccuracies of transient engine flow estimates that cause transient smoke spikes and to improve empirical models of opacity or particulate matter used for engine calibration. It has been proposed by dimensional modeling that exhaust gas recirculation flow rate was significantly underestimated and volumetric efficiency was overestimated by the electronic control module during the turbocharger lag period of an electronically controlled heavy duty diesel engine. Factoring in cylinder-to-cylinder variation, it has been shown that the electronic control module estimated fuel-Oxygen ratio was lower than actual by up to 35% during the turbocharger lag period but within 2% of actual elsewhere, thus hindering fuel-Oxygen ratio limit-based smoke control. The dimensional modeling of transient flow was enabled with a new method of simulating transient data in which the manifold pressures and exhaust gas recirculation system flow resistance, characterized as a function of exhaust gas recirculation valve position at each measured transient data point, were replicated by quasi-static or transient simulation to predict engine flows. Dimensional modeling was also used to transform the engine operating parameter model input space to a more fundamental lower dimensional space so that a nearest neighbor approach could be used to predict smoke emissions. This new approach, intended for engine calibration and control modeling, was termed the "nonparametric reduced dimensionality" approach. It was used to predict federal test procedure cumulative particulate matter within 7% of measured value, based solely on steady-state training data. Very little correlation between the model inputs in the transformed space was observed as compared to the engine operating parameter space. This more uniform, smaller, shrunken model input space might explain how the nonparametric reduced dimensionality approach model could successfully predict federal test procedure emissions when roughly 40% of all transient points were classified as outliers as per the steady-state training data.