2 resultados para Online databases
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The curriculum of the Bucknell University Chemical Engineering Department includes a required senior year capstone course titled Process Engineering, with an emphasis on process design. For the past ten years library research has been a significant component of the coursework, and students working in teams meet with the librarian throughout the semester to explore a wide variety of information resources required for their project. The assignment has been the same from 1989 to 1999. Teams of students are responsible for designing a safe, efficient, and profitable process for the dehydrogenation of ethylbenzene to styrene monomer. A series of written reports on their chosen process design is a significant course outcome. While the assignment and the specific chemical technology have not changed radically in the past decade, the process of research and discovery has evolved considerably. This paper describes the solutions offered in 1989 to meet the information needs of the chemical engineering students at Bucknell University, and the evolution in research brought about by online databases, electronic journals, and the Internet, making the process of discovery a completely different experience in 1999.
Resumo:
With a virus such as Human Immunodeficiency Virus (HIV) that has infected millions of people worldwide, and with many unaware that they are infected, it becomes vital to understand how the virus works and how it functions at the molecular level. Because there currently is no vaccine and no way to eradicate the virus from an infected person, any information about how the virus interacts with its host greatly increases the chances of understanding how HIV works and brings scientists one step closer to being able to combat such a destructive virus. Thousands of HIV viruses have been sequenced and are available in many online databases for public use. Attributes that are linked to each sequence include the viral load within the host and how sick the patient is currently. Being able to predict the stage of infection for someone is a valuable resource, as it could potentially aid in treatment options and proper medication use. Our approach of analyzing region-specific amino acid composition for select genes has been able to predict patient disease state up to an accuracy of 85.4%. Moreover, we output a set of classification rules based on the sequence that may prove useful for diagnosing the expected clinical outcome of the infected patient.