2 resultados para Notophthalmus viridescens.
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Many global amphibian declines have been linked to the fungal pathogen Batrachochytrium dendrobatidis (Bd). The knowledge on Bd distribution provides a fundamental basis for amphibian conservation planning. Yet, such Bd distribution information is currently insufficient, in particular at a regional scale. The college classroom provides an excellent opportunity to expand the knowledge of Bd distribution. Here we provide an example of such research projects to detect Bd prevalence among local amphibians in a college course setting and present the results of work conducted in central Pennsylvania, USA. We collected toe clips and conducted PCR assays of six species, Plethodon cinereus, Desmognathus fuscus, Notophthalmus viridescens, Lithobates catesbeianus, L. clamitans, and L. sylvaticus (59 individuals). Four groups of students independently conducted entire projects, orally presented their findings, and submitted manuscripts to the professor at the end of the semester. This example demonstrates that it is feasible for an undergraduate class to complete a Bd-detection project within a single semester. Such a project not only contributes to Bd research but also promotes conservation education among students through hands-on research experiences. We found Bd infection in only one sample of N. viridescens, but no sign of infection in the rest of the samples. As a relatively high prevalence of Bd has been reported in surrounding areas, our results suggest spatial heterogeneity in Bd occurrence at a regional scale and thus, the need for continued efforts to monitor Bd prevalence.
Resumo:
Understanding the impact of geological events on diversification processes is central to evolutionary ecology. The recent amalgamation between ecological niche models (ENMs) and phylogenetic analyses has been used to estimate historical ranges of modern lineages by projecting current ecological niches of organisms onto paleoclimatic reconstructions. A critical assumption underlying this approach is that niches are stable over time. Using Notophthalmus viridescens (eastern newt), in which four ecologically diverged subspecies are recognized, we introduce an analytical framework free from the niche stability assumption to examine how refugial retreat and subsequent postglacial expansion have affected intraspecific ecological divergence. We found that the current subspecies designation was not congruent with the phylogenetic lineages. Thus, we examined ecological niche overlap between the refugial and modern populations, in both subspecies and lineage, by creating ENMs independently for modern and estimated last glacial maximum (LGM) newt populations, extracting bioclimate variables by randomly generated points, and conducting principal component analyses. Our analyses consistently showed that when tested as a hypothesis, rather than used as an assumption, the niches of N. viridescens lineages have been unstable since the LGM (both subspecies and lineages). There was greater ecological niche differentiation among the subspecies than the modern phylogenetic lineages, suggesting that the subspecies, rather than the phylogenetic lineages, is the unit of the current ecological divergence. The present study found little evidence that the LGM refugial retreat caused the currently observed ecological divergence and suggests that ecological divergence has occurred during postglacial expansion to the current distribution ranges.