1 resultado para Non-Traditional Rewards
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (5)
- Aston University Research Archive (16)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (4)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (14)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (8)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (29)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (4)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (64)
- Helda - Digital Repository of University of Helsinki (5)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (5)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico de Viseu (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (491)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (4)
- Université de Montréal (1)
- Université de Montréal, Canada (14)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (5)
- University of Queensland eSpace - Australia (10)
- University of Washington (1)
- WestminsterResearch - UK (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Performance Tuning Non-Uniform Sampling for Sensitivity Enhancement of Signal-Limited Biological NMR
Resumo:
Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform incrementation of the indirect evolution period. Theory and experiments have shown that NUS can yield up to two-fold improvements in the intrinsic signal-to-noise ratio (SNR) of each dimension, while even conservative protocols can yield 20-40 % improvements in the intrinsic SNR of NMR data. Applications of biological NMR that can benefit from these improvements are emerging, and in this work we develop some practical aspects of applying NUS nD-NMR to studies that approach the traditional detection limit of nD-NMR spectroscopy. Conditions for obtaining high NUS sensitivity enhancements are considered here in the context of enabling H-1,N-15-HSQC experiments on natural abundance protein samples and H-1,C-13-HMBC experiments on a challenging natural product. Through systematic studies we arrive at more precise guidelines to contrast sensitivity enhancements with reduced line shape constraints, and report an alternative sampling density based on a quarter-wave sinusoidal distribution that returns the highest fidelity we have seen to date in line shapes obtained by maximum entropy processing of non-uniformly sampled data.