3 resultados para Non Parametric Methodology
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
This is the first part of a study investigating a model-based transient calibration process for diesel engines. The motivation is to populate hundreds of parameters (which can be calibrated) in a methodical and optimum manner by using model-based optimization in conjunction with the manual process so that, relative to the manual process used by itself, a significant improvement in transient emissions and fuel consumption and a sizable reduction in calibration time and test cell requirements is achieved. Empirical transient modelling and optimization has been addressed in the second part of this work, while the required data for model training and generalization are the focus of the current work. Transient and steady-state data from a turbocharged multicylinder diesel engine have been examined from a model training perspective. A single-cylinder engine with external air-handling has been used to expand the steady-state data to encompass transient parameter space. Based on comparative model performance and differences in the non-parametric space, primarily driven by a high engine difference between exhaust and intake manifold pressures (ΔP) during transients, it has been recommended that transient emission models should be trained with transient training data. It has been shown that electronic control module (ECM) estimates of transient charge flow and the exhaust gas recirculation (EGR) fraction cannot be accurate at the high engine ΔP frequently encountered during transient operation, and that such estimates do not account for cylinder-to-cylinder variation. The effects of high engine ΔP must therefore be incorporated empirically by using transient data generated from a spectrum of transient calibrations. Specific recommendations on how to choose such calibrations, how many data to acquire, and how to specify transient segments for data acquisition have been made. Methods to process transient data to account for transport delays and sensor lags have been developed. The processed data have then been visualized using statistical means to understand transient emission formation. Two modes of transient opacity formation have been observed and described. The first mode is driven by high engine ΔP and low fresh air flowrates, while the second mode is driven by high engine ΔP and high EGR flowrates. The EGR fraction is inaccurately estimated at both modes, while EGR distribution has been shown to be present but unaccounted for by the ECM. The two modes and associated phenomena are essential to understanding why transient emission models are calibration dependent and furthermore how to choose training data that will result in good model generalization.
Resumo:
Smoke spikes occurring during transient engine operation have detrimental health effects and increase fuel consumption by requiring more frequent regeneration of the diesel particulate filter. This paper proposes a decision tree approach to real-time detection of smoke spikes for control and on-board diagnostics purposes. A contemporary, electronically controlled heavy-duty diesel engine was used to investigate the deficiencies of smoke control based on the fuel-to-oxygen-ratio limit. With the aid of transient and steady state data analysis and empirical as well as dimensional modeling, it was shown that the fuel-to-oxygen ratio was not estimated correctly during the turbocharger lag period. This inaccuracy was attributed to the large manifold pressure ratios and low exhaust gas recirculation flows recorded during the turbocharger lag period, which meant that engine control module correlations for the exhaust gas recirculation flow and the volumetric efficiency had to be extrapolated. The engine control module correlations were based on steady state data and it was shown that, unless the turbocharger efficiency is artificially reduced, the large manifold pressure ratios observed during the turbocharger lag period cannot be achieved at steady state. Additionally, the cylinder-to-cylinder variation during this period were shown to be sufficiently significant to make the average fuel-to-oxygen ratio a poor predictor of the transient smoke emissions. The steady state data also showed higher smoke emissions with higher exhaust gas recirculation fractions at constant fuel-to-oxygen-ratio levels. This suggests that, even if the fuel-to-oxygen ratios were to be estimated accurately for each cylinder, they would still be ineffective as smoke limiters. A decision tree trained on snap throttle data and pruned with engineering knowledge was able to use the inaccurate engine control module estimates of the fuel-to-oxygen ratio together with information on the engine control module estimate of the exhaust gas recirculation fraction, the engine speed, and the manifold pressure ratio to predict 94% of all spikes occurring over the Federal Test Procedure cycle. The advantages of this non-parametric approach over other commonly used parametric empirical methods such as regression were described. An application of accurate smoke spike detection in which the injection pressure is increased at points with a high opacity to reduce the cumulative particulate matter emissions substantially with a minimum increase in the cumulative nitrogrn oxide emissions was illustrated with dimensional and empirical modeling.
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.