3 resultados para New Particle Formation

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tropical Storm Lee produced 25-36 cm of rainfall in north-central Pennsylvania on September 4th through 8th of 2011. Loyalsock Creek, Muncy Creek, and Fishing Creek experienced catastrophic flooding resulting in new channel formation, bank erosion, scour of chutes, deposition/reworking of point bars and chute bars, and reactivation of the floodplain. This study was created to investigate aspects of both geomorphology and sedimentology by studying the well-exposed gravel deposits left by the flood, before these features are removed by humans or covered by vegetation. By recording the composition of gravel bars in the study area and creating lithofacies models, it is possible to understand the 2011 flooding. Surficial clasts on gravel bars are imbricated, but the lack of imbrication and high matrix content of sediments at depth suggests that surface imbrication of the largest clasts took place during hyperconcentrated flow (40-70% sediment concentration). The imbricated clasts on the surface are the largest observed within the bars. The lithofacies recorded are atypical for mixed-load stream lithofacies and more similar to glacial outburst flood lithofacies. This paper suggests that the accepted lithofacies model for mixed-load streams with gravel bedload may not always be useful for interpreting depositional systems. A flume study, which attempted to duplicate the stratigraphy recorded in the field, was run in order to better understand hyperconcentrated flows in the study area. Results from the study in the Bucknell Geology Flume Laboratory indicate that surficial imbrication is possible in hyperconcentrated conditions. After flooding the flume to entrain large amounts of sand and gravel, deposition of surficially imbricated gravel with massive or upward coarsening sedimentology occurred. Imbrication was not observed at depth. These experimental flume deposits support our interpretation of the lithofacies discovered in the field. The sizes of surficial gravel bar clasts show clear differences between chute and point bars. On point bars, gravels fine with increasing distance from the channel. Fining also occurs at the downstream end of point bars. In chute deposits, dramatic fining occurs down the axis of the chute, and lateral grain sizes are nearly uniform. Measuring the largest grain size of sandstone clasts at 8-11 kilometer intervals on each river reveals anomalies in the downstream fining trends. Gravel inputs from bedrock outcrops, tributaries, and erosion of Pleistocene outwash terraces may explain observed variations in grain size along streams either incised into the Appalachian Plateau or located near the Wisconsinan glacial boundary. Atomic Mass Spectrometry (AMS) radiocarbon dating of sediment from recently scoured features on Muncy Creek and Loyalsock Creek returned respective ages of 500 BP and 2490 BP. These dates suggest that the recurrence interval of the 2011 flooding may be several hundred to several thousand years. This geomorphic interval of recurrence is much longer then the 120 year interval calculated by the USGS using historical stream gauge records.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many industrial solids processes require the production of disperse particles. In industries such as food, personal care, and pharmaceuticals, particle formation is widely used to produce solid products or to separate substances in intermediate process steps. The most important characteristics known to impact the effectiveness of a solid product are purity, size, internal structure, and morphology. These characteristics are essential to maintain optimal operation of subsequent process steps and for obtaining the desired high quality product. This thesis aims to aid in the advancement of particle production technology by (1) investigating the use of a vibrating orifice aerosol generator (VOAG) for collecting data to predict particle attributes including morphology, size, and internal structure as a function of processing parameters such as solvent, solution concentration, air flow rate, and initial droplet size, as well as to (2) determine the extent to which uniform droplet evaporation can be a tool to achieve novel particle morphologies, controlled sizes, or internal structures (crystallinity and crystal form). Experimental results for succinic acid, L-serine, and L-glutamic acid suggest that particles of controlled characteristics can indeed be produced by this method. Analysis by scanning electron microscopy (SEM), nanoindentation, and X-ray diffraction (XRD) shows that various sizes, internal structures, and morphologies can be obtained using the VOAG. Furthermore, unique morphologies and unexpected internal structures were able to be achieved for succinic acid, providing an added benefit to particle formation by this method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 mu g/bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stablilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated. Implications: Halymorpha halys (brown marmorated stink bugs) are a relatively new invasive species introduced in the United States near Allentown, Pennsylvania. The authors chemically speciated the bugs' defense pheromones and found that tridecane, 5-ethyl-2(5H)-furanone, and (E)-2-decenal dominated their emissions. Their defense emissions were reacted with atmospherically relevant concentrations of ozone and resulted in 0.23 g of particulate matter per emission per bug. Due to the large population of these bugs in some regions, these emissions could contribute appreciably to a region's PM2.5 (particulate matter with an aerodynamic diameter 2.5 m) levels.