3 resultados para Navigation Aids

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to examine the role of vocational rehabilitation services in contributing to the goals of the National HIV/AIDS strategy. Three key research questions are addressed: (a) What is the relationship among factors associated with the use of vocational rehabilitation services for people living with HIV/AIDS? (b) Are the factors associated with use of vocational rehabilitation also associated with access to health care, supplemental employment services and reduced risk of HIV transmission? And (c) What unique role does use of vocational rehabilitation services play in access to health care and HIV prevention? Survey research methods were used to collect data from a broad sample of volunteer respondents who represented diverse racial (37% Black, 37% White, 18% Latino, 7% other), gender (65% male, 34% female, 1% transgender) and sexual orientation (48% heterosexual, 44% gay, 8% bisexual) backgrounds. The fit of the final structural equation model was good (root mean square error of approximation = .055, Comparative Fit Index=.953, Tucker Lewis Index=.945). Standardized effects with bootstrap confidence intervals are reported. Overall, the findings support the hypothesis that vocational rehabilitation services can play an important role in health and prevention strategies outlined in the National HIV/AIDS strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While beneficially decreasing the necessary incision size, arthroscopic hip surgery increases the surgical complexity due to loss of joint visibility. To ease such difficulty, a computer-aided mechanical navigation system was developed to present the location of the surgical tool relative to the patient¿s hip joint. A preliminary study reduced the position error of the tracking linkage with limited static testing trials. In this study, a correction method, including a rotational correction factor and a length correction function, was developed through more in-depth static testing. The developed correction method was then applied to additional static and dynamic testing trials to evaluate its effectiveness. For static testing, the position error decreased from an average of 0.384 inches to 0.153 inches, with an error reduction of 60.5%. Three parameters utilized to quantify error reduction of dynamic testing did not show consistent results. The vertex coordinates achieved 29.4% of error reduction, yet with large variation in the upper vertex. The triangular area error was reduced by 5.37%, however inconsistent among all five dynamic trials. Error of vertex angles increased, indicating a shape torsion using the developed correction method. While the established correction method effectively and consistently reduced position error in static testing, it did not present consistent results in dynamic trials. More dynamic paramters should be explored to quantify error reduction of dynamic testing, and more in-depth dynamic testing methodology should be conducted to further improve the accuracy of the computer-aided nagivation system.