2 resultados para NUMBER SYSTEM
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Studying liquid fuel combustion is necessary to better design combustion systems. Through more efficient combustors and alternative fuels, it is possible to reduce greenhouse gases and harmful emissions. In particular, coal-derived and Fischer-Tropsch liquid fuels are of interest because, in addition to producing fewer emissions, they have the potential to drastically reduce the United States' dependence on foreign oil. Major academic research institutions like the Pennsylvania State University perform cutting-edge research in many areas of combustion. The Combustion Research Laboratory (CRL) at Bucknell University is striving to develop the necessary equipment to be capable of both independent and collaborative research efforts with Penn State and in the process, advance the CRL to the forefront of combustion studies. The focus of this thesis is to advance the capabilities of the Combustion Research Lab at Bucknell. Specifically, this was accomplished through a revision to a previously designed liquid fuel injector, and through the design and installation of a laser extinction system for the measurement of soot produced during combustion. The previous liquid fuel injector with a 0.005" hole did not behave as expected. Through spray testing the 0.005" injector with water, it was determined that experimental errors were made in the original pressure testing of the injector. Using data from the spray testing experiment, new theoretical hole sizes of the injector were calculated. New injectors with 0.007" and 0.0085" orifices were fabricated and subsequently tested to qualitatively validate their behavior. The injectors were installed in the combustion rig in the CRL and hot-fire tested with liquid heptane. The 0.0085" injector yielded a manageable fuel pressure and produced a broad flame. A laser extinction system was designed and installed in the CRL. This involved the fabrication of a number of custom-designed parts and the specification of laser extinction equipment for purchase. A standard operating procedure for the laser extinction system was developed to provide a consistent, safe method for measuring soot formation during combustion.
Resumo:
A major unresolved question in developmental neurobiology is how the nervous system is adapted to the specific needs of the organism at different life stages. In the holometabolous insect Drosophila melanogaster, the larval ventral nervous system (VNS) is comprised of similar repeating segments, as opposed to the adult VNS, which varies greatly from segment to segment both in number and types of neurons. The adult-specific neurons of each segment are generated by 25 distinct types of neuronal progenitor cells called neuroblasts (NBs) that appear in a stereotyped array (Truman et al., 2004). Each NB divides repeatedly to produce a distinct set of daughter cells termed a lineage, which is bilaterally symmetric but present to varying degrees in each segment. These daughter cells can be distinguished by their position within the nervous system as well as by their axonal projections. Each of the 25 NBs produces neurons; if both daughter cells are present in a lineage then both sibling populations survived, whereas if only one projection is seen cell death occurred, leaving a hemilineage (half lineage). In some lineages, the same sibling type survives in all segments in which the lineage appears, but in others, the surviving sibling type varies across segments, resulting in a different morphology for the same lineage in different segments. How are these differences in survival and morphology controlled? The Hox genes provide positional information for developing structures along the anterior-posterior (AP) axis of animals. They encode transcription factors, thereby controlling the activity of genes down stream. In the postembryonic VNS, each NB lineage features its own characteristic expression pattern of Hox genes Antp and Ubx, which can vary from segment-to-segment, and can thereby cause variation in the number of neural cells and axonal projections that survive. This study defines the wild-type expression pattern of Antp and elucidates the role of Antp in gain of function studies. These studies are possible due to the MARCM (Mosaic Analysis with a Repressible Cell Marker) method, which allows the genetically manipulated cells to be specifically labeled in an otherwise normal, unlabeled organism. The results indicate that Antp is expressed in a segment-, lineage-, and hemilineage-specific manner. Antp is sufficient for both anterior and posterior transformations of particular lineages, including promotion of cell death and/or survival as well as axon guidance.