2 resultados para Montgomery multiplication
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Let G be a locally finite group satisfying the condition given in the title and suppose that G is not nilpotent-by-Chernikov. It is shown that G has a section S that is not nilpotent-by-Chernikov, where S is either a p-group or a semi-direct product of the additive group A of a locally finite field F by a subgroup K of the multiplicative group of F, where K acts by multiplication on A and generates F as a ring. Non-(nilpotent-by-Chernikov) extensions of this latter kind exist and are described in detail.
Resumo:
We consider analytic reproducing kernel Hilbert spaces H with orthonormal bases of the form {(a(n) + b(n)z)z(n) : n >= 0}. If b(n) = 0 for all n, then H is a diagonal space and multiplication by z, M-z, is a weighted shift. Our focus is on providing extensive classes of examples for which M-z is a bounded subnormal operator on a tridiagonal space H where b(n) not equal 0. The Aronszajn sum of H and (1 - z)H where H is either the Hardy space or the Bergman space on the disk are two such examples.