3 resultados para Molecular mechanics simulation

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations have been used to explore the conformational flexibility of a PNA·DNA·PNA triple helix in aqueous solution. Three 1.05 ns trajectories starting from different but reasonable conformations have been generated and analyzed in detail. All three trajectories converge within about 300 ps to produce stable and very similar conformational ensembles, which resemble the crystal structure conformation in many details. However, in contrast to the crystal structure, there is a tendency for the direct hydrogen-bonds observed between the amide hydrogens of the Hoogsteen-binding PNA strand and the phosphate oxygens of the DNA strand to be replaced by water-mediated hydrogen bonds, which also involve pyrimidine O2 atoms. This structural transition does not appear to weaken the triplex structure but alters groove widths and so may relate to the potential for recognition of such structures by other ligands (small molecules or proteins). Energetic analysis leads us to conclude that the reason that the hybrid PNA/DNA triplex has quite different helical characteristics from the all-DNA triplex is not because the additional flexibility imparted by the replacement of sugar−phosphate by PNA backbones allows motions to improve base-stacking but rather that base-stacking interactions are very similar in both types of triplex and the driving force comes from weak but definate conformational preferences of the PNA strands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of the pm3 semiempirical quantum mechanical method to reproduce hydrogen bonding in nucleotide base pairs was assessed. Results of pm3 calculations on the nucleotides 2′-deoxyadenosine 5′-monophosphate (pdA), 2′-deoxyguanosine 5′-monophosphate (pdG), 2′-deoxycytidine 5′-monophosphate (pdC), and 2′-deoxythymidine 5′-monophosphate (pdT) and the base pairs pdA–pdT, pdG–pdC, and pdG(syn)–pdC are presented and discussed. The pm3 method is the first of the parameterized nddo quantum mechanical models with any ability to reproduce hydrogen bonding between nucleotide base pairs. Intermolecular hydrogen bond lengths between nucleotides displaying Watson–Crick base pairing are 0.1–0.2 Å less than experimental results. Nucleotide bond distances, bond angles, and torsion angles about the glycosyl bond (χ), the C4′C5′ bond (γ), and the C5′O5′ bond (β) agree with experimental results. There are many possible conformations of nucleotides. pm3 calculations reveal that many of the most stable conformations are stabilized by intramolecular CHO hydrogen bonds. These interactions disrupt the usual sugar puckering. The stacking interactions of a dT–pdA duplex are examined at different levels of gradient optimization. The intramolecular hydrogen bonds found in the nucleotide base pairs disappear in the duplex, as a result of the additional constraints on the phosphate group when part of a DNA backbone. Sugar puckering is reproduced by the pm3 method for the four bases in the dT–pdA duplex. pm3 underestimates the attractive stacking interactions of base pairs in a B-DNA helical conformation. The performance of the pm3 method implemented in SPARTAN is contrasted with that implemented in MOPAC. At present, accurate ab initio calculations are too timeconsuming to be of practical use, and molecular mechanics methods cannot be used to determine quantum mechanical properties such as reaction-path calculations, transition-state structures, and activation energies. The pm3 method should be used with extreme caution for examination of small DNA systems. Future parameterizations of semiempirical methods should incorporate base stacking interactions into the parameterization data set to enhance the ability of these methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the structure and stability of (H3O+)(H2O)8 clusters using a combination of molecular dynamics sampling and high-level ab initio calculations. 20 distinct oxygen frameworks are found within 2 kcal/mol of the electronic or standard Gibbs free energy minimum. The impact of quantum zero-point vibrational corrections on the relative stability of these isomers is quite significant. The box-like isomers are favored in terms of electronic energy, but with the inclusion of zero-point vibrational corrections and entropic effects tree-like isomers are favored at higher temperatures. Under conditions from 0 to 298.15 K, the global minimum is predicted to be a tree-like structure with one dangling singly coordinated water molecule. Above 298.15 K, higher entropy tree-like isomers with two or more singly coordinated water molecules are favored. These assignments are generally consistent with experimental IR spectra of (H3O+)(H2O)8 obtained at 150 K.