1 resultado para Modular functions.
em Bucknell University Digital Commons - Pensilvania - USA
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (3)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (11)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston University Digital Common (6)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (13)
- Cambridge University Engineering Department Publications Database (83)
- CentAUR: Central Archive University of Reading - UK (110)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (60)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (9)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (1)
- Digital Peer Publishing (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (7)
- Helda - Digital Repository of University of Helsinki (37)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (153)
- Instituto Politécnico do Porto, Portugal (7)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (25)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (134)
- Queensland University of Technology - ePrints Archive (113)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (5)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (19)
- University of Michigan (2)
- University of Southampton, United Kingdom (3)
- WestminsterResearch - UK (3)
Resumo:
The Rankin convolution type Dirichlet series D-F,D-G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series D-F,D-G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinations of those. In order to conduct these experiments a numerical method to compute the Petersson scalar products of Jacobi Forms is developed and discussed in detail.