4 resultados para Modified FDD Design Technology

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The curriculum of the Bucknell University Chemical Engineering Department includes a required senior year capstone course titled Process Engineering, with an emphasis on process design. For the past ten years library research has been a significant component of the coursework, and students working in teams meet with the librarian throughout the semester to explore a wide variety of information resources required for their project. The assignment has been the same from 1989 to 1999. Teams of students are responsible for designing a safe, efficient, and profitable process for the dehydrogenation of ethylbenzene to styrene monomer. A series of written reports on their chosen process design is a significant course outcome. While the assignment and the specific chemical technology have not changed radically in the past decade, the process of research and discovery has evolved considerably. This paper describes the solutions offered in 1989 to meet the information needs of the chemical engineering students at Bucknell University, and the evolution in research brought about by online databases, electronic journals, and the Internet, making the process of discovery a completely different experience in 1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the chemical compatibility of several model soil-bentonite(SB) backfills with an inorganic salt solution (CaCl2). First, bentonite-water slurry was created using a natural sodium-bentonite, as well as two modified bentonites –multiswellable bentonite (MSB) and a “salt-resistant” bentonite (SW101). Once slurries that met typical construction specifications had been created using the various bentonites,the model SB backfills were prepared for each type of bentonite. These backfills werealso designed to meet conventional construction and design requirements. The SB backfills were then subjected to permeation with tap water and/or CaCl2 solutions of various concentrations in order to evaluate the compatibility of the SB backfills with inorganic chemicals. The results indicate that SB backfill experiences only minor compatibility issues (i.e., no large differences between the hydraulic conductivity of the SB backfill to tap water and CaCl2) compared to many other types of clay barriers. In addition, SB backfills show no major change in final hydraulic conductivity to CaCl2 when permeated with tap water before CaCl2 versus being permeated with CaCl2 directly. These results may be due to the ability of the bentonite in the SB backfills to undergo osmotic swelling before permeation begins, and the inability of the CaCl2 solutions to undo the osmotic swelling. Similar results were obtained for all three clays tested, and while MSB did show less compatibility issues than the natural bentonite and SW101, it appears that the differences in performance may generally be negligible. Overall, thisstudy makes a significant addition to the understanding of SB cutoff wall compatibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research project is to study an innovative method for the stability assessment of structural steel systems, namely the Modified Direct Analysis Method (MDM). This method is intended to simplify an existing design method, the Direct Analysis Method (DM), by assuming a sophisticated second-order elastic structural analysis will be employed that can account for member and system instability, and thereby allow the design process to be reduced to confirming the capacity of member cross-sections. This last check can be easily completed by substituting an effective length of KL = 0 into existing member design equations. This simplification will be particularly useful for structural systems in which it is not clear how to define the member slenderness L/r when the laterally unbraced length L is not apparent, such as arches and the compression chord of an unbraced truss. To study the feasibility and accuracy of this new method, a set of 12 benchmark steel structural systems previously designed and analyzed by former Bucknell graduate student Jose Martinez-Garcia and a single column were modeled and analyzed using the nonlinear structural analysis software MASTAN2. A series of Matlab-based programs were prepared by the author to provide the code checking requirements for investigating the MDM. By comparing MDM and DM results against the more advanced distributed plasticity analysis results, it is concluded that the stability of structural systems can be adequately assessed in most cases using MDM, and that MDM often appears to be a more accurate but less conservative method in assessing stability.