2 resultados para Mixed Study

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parents and children, starting at very young ages, discuss religious and spiritual issues¿where we come from, what happens to us after we die, is there a God, and so on. Unfortunately, few studies have analyzed the content and structure of parent-child conversation about religion and spirituality (Boyatzis & Janicki, 2003; Dollahite & Thatcher, 2009), and most studies have relied on self-report with no direct observation. The current study examined mother-child (M-C) spiritual discourse to learn about its content, structure, and frequency through a survey inventory in combination with direct video observation using a novel structured task. We also analyzed how mothers¿ religiosity along several major dimensions related to their communication behaviors within both methods. Mothers (N = 39, M age = 40) of children aged 3-12 completed a survey packet on M-C spiritual discourse and standard measures of mothers¿ religious fundamentalism, intrinsic religiosity, sanctification of parenting (how much the mother saw herself as doing God¿s work as a parent), and a new measure of parental openness to children¿s spirituality. Then, in a structured task in our lab, mothers (N = 33) and children (M age = 7.33) watched a short film or read a short book that explored death in an age-appropriate manner and then engaged in a videotaped conversation about the movie or book and their religious or spiritual beliefs. Frequency of M-C spiritual discourse was positively related to mothers¿ religious fundamentalism (r = .71, p = .00), intrinsic religiosity (r = .77, p = .00), and sanctification of parenting (r = .79, p = .00), but, surprisingly, was inversely related to mothers¿ v openness to child¿s spirituality (r = -.52, p = .00). Survey data showed that the two most common topics discussed were God (once a week) and religion as it relates to moral issues (once a week). According to mothers their children¿s most common method of initiating spiritual discourse was to repeat what he or she has heard parents or family say about religious issues (M = 2.97; once a week); mothers¿ most common method was to describe their own religious/spiritual beliefs (M = 2.92). Spiritual discourse most commonly occurred either at bedtime or mealtime as reported by 26% of mothers, with the most common triggers reported as daily routine/random thoughts (once a week) and observations of nature (once a week). Mothers¿ most important goals for spiritual discourse were to let their children know that they love them (M = 3.72; very important) and to help them become a good and moral person (M = 3.67; very important). A regression model showed that significant variance in frequency of mother-child spiritual discourse (R2 = .84, p = .00) was predicted by the mothers¿ importance of goals during discourse (ß = 0.46, p = .00), frequency that the mother¿s spirituality was deepened through spiritual discourse (ß = 0.39, p = .00), and the mother¿s fundamentalism (ß = 0.20, p = .05). In a separate regression, the mother¿s comfort in the structured task (ß = 0.70, p = .00), and the number of open-ended questions she asked (ß = -0.26, p = .03) predicted the reciprocity between mother and child (R2 = .62, p = .00). In addition, the mother¿s age (ß = 0.22, p = .059) and comfort during the task (ß = 0.73, p = .00) predicted the child¿s engagement within the structured task. Other findings and theoretical and methodological implications will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaerobic digestion of food scraps has the potential to accomplish waste minimization, energy production, and compost or humus production. At Bucknell University, removal of food scraps from the waste stream could reduce municipal solid waste transportation costs and landfill tipping fees, and provide methane and humus for use on campus. To determine the suitability of food waste produced at Bucknell for high-solids anaerobic digestion (HSAD), a year-long characterization study was conducted. Physical and chemical properties, waste biodegradability, and annual production of biodegradable waste were assessed. Bucknell University food and landscape waste was digested at pilot-scale for over a year to test performance at low and high loading rates, ease of operation at 20% solids, benefits of codigestion of food and landscape waste, and toprovide digestate for studies to assess the curing needs of HSAD digestate. A laboratory-scale curing study was conducted to assess the curing duration required to reduce microbial activity, phytotoxicity, and odors to acceptable levels for subsequent use ofhumus. The characteristics of Bucknell University food and landscape waste were tested approximately weekly for one year, to determine chemical oxygen demand (COD), total solids (TS), volatile solids (VS), and biodegradability (from batch digestion studies). Fats, oil, and grease and total Kjeldahl nitrogen were also tested for some food waste samples. Based on the characterization and biodegradability studies, Bucknell University dining hall food waste is a good candidate for HSAD. During batch digestion studies Bucknell University food waste produced a mean of 288 mL CH4/g COD with a 95%confidence interval of 0.06 mL CH4/g COD. The addition of landscape waste for digestion increased methane production from both food and landscape waste; however, because the landscape waste biodegradability was extremely low the increase was small.Based on an informal waste audit, Bucknell could collect up to 100 tons of food waste from dining facilities each year. The pilot-scale high-solids anaerobic digestion study confirmed that digestion ofBucknell University food waste combined with landscape waste at a low organic loading rate (OLR) of 2 g COD/L reactor volume-day is feasible. During low OLR operation, stable reactor performance was demonstrated through monitoring of biogas production and composition, reactor total and volatile solids, total and soluble chemical oxygendemand, volatile fatty acid content, pH, and bicarbonate alkalinity. Low OLR HSAD of Bucknell University food waste and landscape waste combined produced 232 L CH4/kg COD and 229 L CH4/kg VS. When OLR was increased to high loading (15 g COD/L reactor volume-day) to assess maximum loading conditions, reactor performance became unstable due to ammonia accumulation and subsequent inhibition. The methaneproduction per unit COD also decreased (to 211 L CH4/kg COD fed), although methane production per unit VS increased (to 272 L CH4/kg VS fed). The degree of ammonia inhibition was investigated through respirometry in which reactor digestate was diluted and exposed to varying concentrations of ammonia. Treatments with low ammoniaconcentrations recovered quickly from ammonia inhibition within the reactor. The post-digestion curing process was studied at laboratory-scale, to provide a preliminary assessment of curing duration. Digestate was mixed with woodchips and incubated in an insulated container at 35 °C to simulate full-scale curing self-heatingconditions. Degree of digestate stabilization was determined through oxygen uptake rates, percent O2, temperature, volatile solids, and Solvita Maturity Index. Phytotoxicity was determined through observation of volatile fatty acid and ammonia concentrations.Stabilization of organics and elimination of phytotoxic compounds (after 10–15 days of curing) preceded significant reductions of volatile sulfur compounds (hydrogen sulfide, methanethiol, and dimethyl sulfide) after 15–20 days of curing. Bucknell University food waste has high biodegradability and is suitable for high-solids anaerobic digestion; however, it has a low C:N ratio which can result in ammonia accumulation under some operating conditions. The low biodegradability of Bucknell University landscape waste limits the amount of bioavailable carbon that it can contribute, making it unsuitable for use as a cosubstrate to increase the C:N ratio of food waste. Additional research is indicated to determine other cosubstrates with higher biodegradabilities that may allow successful HSAD of Bucknell University food waste at high OLRs. Some cosubstrates to investigate are office paper, field residues, or grease trap waste. A brief curing period of less than 3 weeks was sufficient to produce viable humus from digestate produced by low OLR HSAD of food and landscape waste.