4 resultados para Military vessels.
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Corporations, nongovernmental organizations, and other organizational forms are major players in the sodal world. Recently, sociological scholarship on organizations has converged with research on the professions to discuss the ways in which professions are shaped or influenced by different organizational forms. In this article, I borrows from the notion of framing within social movement research to argue that organizational forms frame the bids of aspiring professionals. More specifically, I argue that certain organizational forms-such as that of the modern corporation-can aid would-be professionals in making their claims for professional recognition. Organizations do this, I argue, by providing aspiring professionals with a ready-made setting, rationale, and guarantees that make the newcomers more easily recognizable as professionals to outside audiences. I explore this argument by examining how the corporate form has facilitated private military contractors in their attempts to legitimate and develop this highly controversial new industry. The data are drawn from my interviews with private military contractors, state officials, and other interested parties surrounding private military corporations, as well as from archival data that detail the rise of the private military industry.
Resumo:
Recent claims of blood vessels extracted from dinosaur fossils challenge classical views of soft-tissue preservation. Alternatively, these structures may represent postdepositional,diagenetic biofilms that grew on vascular cavity surfaces within the fossil. Similar red, hollow, tube-shaped structures were recovered from well-preserved and poorly-preserved (abraded, desiccated, exposed) Upper Cretaceous dinosaur fossils in this study. Integration of light microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy was used to compare these vessel structures to the fossils from which they are derived. Vessel structures are typically 100-400 μm long, 0.5-1.5 μm thick, 10-40 μm in diameter and take on a wide range of straight, curved, andbranching morphologies. Interior surfaces vary from smooth to globular and typically contain spheres, rods, and fibrous structures (< 2 μm in diameter) incorporated into the surface. Exterior surfaces exhibit 2-μm-tall converging ridges, spaced 1-3 μm apart, that are sub-parallel to the long axis of the vessel structure. Fossil vascular cavities are typically coated with a smooth or grainy orange layer that shows a wide range of textures including smooth, globular, rough, ropy, and combinations thereof. Coatings tend to overlay secondary mineral crystals and framboids, confirming they are not primary structures of the fossil. For some cavity coatings, the surface that had been in contact with the bone exhibits a ridged texture, similar to that of vessel structures, having formed as a mold of the intravascular bone surface. Thus, vessel structures are interpreted as intact cavity coatings isolated after the fossil is demineralized. The presence of framboids and structures consistent in size and shape with bacteria cells, the abundance of iron in cavity coatings, and the growth of biofilms directly from the fossil that resemble respective cavity coatings support the hypothesis that vessel structures result from ironconsuming bacteria that form biofilms on the intravascular bone surfaces of fossil dinosaur bone. This also accounts for microstructures resembling osteocytes as some fossil lacunae are filled with the same iron oxide that comprises vessel structures andcoatings. Results of this study show that systematic, high-resolution SEM analyses of vertebrate fossils can provide improved insight on microtaphonomic processes, including the role of bacteria in diagenesis. These results conflict with earlier claims of dinosaurblood vessels and osteocytes.