3 resultados para Microstructural evaluations
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Describes a strategy for school psychologists to use in selecting the types of program evaluation required to meet system needs. Dimensions of program evaluation—target, purpose, and stage—relevant to school psychologists are described and defined and combined into a conceptual framework indicating 48 different types of program evaluation. The proposed model incorporates relevant aspects of existing program evaluation strategies and action research, affording practitioners a strategy for selecting and conducting program evaluations. Suggested steps for implementing the action research strategy, as well as a hypothetical example of its use, are offered.
Resumo:
This study examines the effects of the source of whistle-blowing allegations and potential for allegations to trigger concerns about reputation threats on Chief Audit Executives’ handling of whistle-blowing allegations. The participants for this study, 79 Chief Audit Executives (CAEs) and deputy CAEs, evaluated whistle-blowing reports related to financial reporting malfeasance that were received from either an anonymous or a non-anonymous source. The whistle-blowing reports alleged that the wrongdoing resulted from either the exploitation of substantial weaknesses in internal controls (suggesting higher responsibility of the CAE and internal audit) or the circumvention of internal controls (suggesting lower responsibility of the CAE or internal audit). Findings indicate that CAEs believe anonymous whistle-blowing reports to be significantly less credible than non-anonymous reports. Although CAEs assessed lower credibility ratings for the reports alleging wrongdoing by the exploitation of substantial weaknesses in internal controls, they allocated more resources to investigating these allegations.
Resumo:
ASTM A529 carbon¿manganese steel angle specimens were joined by flash butt welding and the effects of varying process parameter settings on the resulting welds were investigated. The weld metal and heat affected zones were examined and tested using tensile testing, ultrasonic scanning, Rockwell hardness testing, optical microscopy, and scanning electron microscopy with energy dispersive spectroscopy in order to quantify the effect of process variables on weld quality. Statistical analysis of experimental tensile and ultrasonic scanning data highlighted the sensitivity of weld strength and the presence of weld zone inclusions and interfacial defects to the process factors of upset current, flashing time duration, and upset dimension. Subsequent microstructural analysis revealed various phases within the weld and heat affected zone, including acicular ferrite, Widmanstätten or side-plate ferrite, and grain boundary ferrite. Inspection of the fracture surfaces of multiple tensile specimens, with scanning electron microscopy, displayed evidence of brittle cleavage fracture within the weld zone for certain factor combinations. Test results also indicated that hardness was increased in the weld zone for all specimens, which can be attributed to the extensive deformation of the upset operation. The significance of weld process factor levels on microstructure, fracture characteristics, and weld zone strength was analyzed. The relationships between significant flash welding process variables and weld quality metrics as applied to ASTM A529-Grade 50 steel angle were formalized in empirical process models.