8 resultados para Michael R. Evans
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
Quantum channel identification, a standard problem in quantum metrology, is the task of estimating parameter(s) of a quantum channel. We investigate dissonance (quantum discord in the absence of entanglement) as an aid to quantum channel identification and find evidence for dissonance as a resource for quantum information processing. We consider the specific case of dissonant Bell-diagonal probes of the qubit depolarizing channel, using quantum Fisher information as a measure of statistical information extracted by the probe. In this setting dissonant quantum probes yield more statistical information about the depolarizing probability than do corresponding probes without dissonance and greater dissonance yields greater information. This effect only operates consistently when we control for classical correlation between the probe and its ancilla and the joint and marginal purities of the ancilla and probe.
Resumo:
A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) from Streptomyces antibioticus has been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space group P222, with unit-cell parameters a = 41.26, b = 51.86, c= 154.78 A. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 A resolution.
Resumo:
The potential for changes in hydraulic conductivity, k, of two model soil-bentonite (SB) backfills subjected to wet-dry cycling was investigated. The backfills were prepared with the same base soil (clean, fine sand) but different bentonite contents (2.7 and 5.6 dry wt %). Saturation (S), volume change, and k of consolidated backfill specimens (effective stress = 24 kPa) were evaluated over three to seven cycles in which the matric suction, Ym, in the drying stage ranged from 50 to 700 kPa. Both backfills exhibited susceptibility to degradation in k caused by wet-dry cycling. Mean values of k for specimens dried at Ym = 50 kPa (S = 30-60 % after drying) remained low after two cycles, but increased by 5- to 300-fold after three or more cycles. Specimens dried at Ym ≥ 150 kPa (S < 30 % after drying) were less resilient and exhibited 500- to 10 000-fold increases in k after three or more cycles. The greater increases in k for these specimens correlated with greater vertical shrinkage upon drying. The findings suggest that increases in hydraulic conductivity due to wet-dry cycling may be a concern for SB vertical barriers located within the zone of a fluctuating groundwater table.
Resumo:
Energy in a multipartite quantum system appears from an operational perspective to be distributed to some extent non-locally because of correlations extant among the system's components. This non-locality allows users to transfer, in effect, locally accessible energy between sites of different system components by local operations and classical communication (LOCC). Quantum energy teleportation is a three-step LOCC protocol, accomplished without an external energy carrier, for effectively transferring energy between two physically separated, but correlated, sites. We apply this LOCC teleportation protocol to a model Heisenberg spin particle pair initially in a quantum thermal Gibbs state, making temperature an explicit parameter. We find in this setting that energy teleportation is possible at any temperature, even at temperatures above the threshold where the particles' entanglement vanishes. This shows for Gibbs spin states that entanglement is not fundamentally necessary for energy teleportation; correlation other than entanglement can suffice. Dissonance-quantum correlation in separable states-is in this regard shown to be a quantum resource for energy teleportation, more dissonance being consistently associated with greater energy yield. We compare energy teleportation from particle A to B in Gibbs states with direct local energy extraction by a general quantum operation on B and find a temperature threshold below which energy extraction by a local operation is impossible. This threshold delineates essentially two regimes: a high temperature regime where entanglement vanishes and the teleportation generated by other quantum correlations yields only vanishingly little energy relative to local extraction and a second low-temperature teleportation regime where energy is available at B only by teleportation.
Resumo:
Haitian-American author Edwidge Danticat evokes the Haitian tradition of storytelling in many of her novels and short story collections. A tradition formulated by vodou religion and the amalgamation of African cultures, storytelling acts to entertain, educate and enlighten the people of Haiti. Additionally, her novels are often written in the context of traumatic events in Haitian history. While Danticat's works have been studied with focus on their depiction of storytelling and of trauma, little has been done on the restorative power that storytelling provides. In this thesis, I seek to examine the potential for Danticat's characters and works to create narratives that build community, present testimony, and aid traumatized individuals in recovery.
Resumo:
Carbon dioxide (CO2) has been of recent interest due to the issue of greenhouse cooling in the upper atmosphere by species such as CO2 and NO. In the Earth’s upper atmosphere, between altitudes of 75 and 110 km, a collisional energy exchange occurs between CO2 and atomic oxygen, which promotes a population of ground state CO2 to the bend excited state. The relaxation of CO2 following this excitation is characterized by spontaneous emission of 15-μm. Most of this energy is emitted away from Earth. Due to the low density in the upper atmosphere, most of this energy is not reabsorbed and thus escapes into space, leading to a local cooling effect in the upper atmosphere. To determine the efficiency of the CO2- O atom collisional energy exchange, transient diode laser absorption spectroscopy was used to monitor the population of the first vibrationally excited state, 13CO2(0110) or ν2, as a function of time. The rate coefficient, kO(ν2), for the vibrational relaxation 13CO2 (ν2)-O was determined by fitting laboratory measurements using a home-written linear least squares algorithm. The rate coefficient, kO(ν2), of the vibrational relaxation of 13CO2(ν2), by atomic oxygen at room temperature was determined to be (1.6 ± 0.3 x 10-12 cm3 s-1), which is within the uncertainty of the rate coefficient previously found in this group for 12CO2(ν2) relaxation. The cold temperature kO(ν2) values were determined to be: (2.1 ± 0.8) x 10-12 cm3 s-1 at Tfinal = 274 K, (1.8 ± 0.3) x 10-12 cm3 s-1 at Tfinal = 239 K, (2 ± 1) x 10-12 cm3 s-1 at Tfinal = 208 K, and (1.7 ± 0.3) x 10-12 cm3 s-1 at Tfinal = 186 K. These data did not show a definitive negative temperature dependence comparable to that found for 12CO2 previously.
Resumo:
Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.
Resumo:
The synthesis of resolved P-metalated nucleoside phosphoramidites is described. These rare compounds were initially prepared with gold as the metal center; however, the gold can be removed using basic phosphines or solid-supported triphenylphosphine. Treatment of the free nucleoside phosphoramidite with a platinum source generated a unique platinated dinucleoside species with a diastereomeric ratio of >99:1.