4 resultados para Meyer–Konig and Zeller Operators

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative way is provided to define the discrete Pascal transform using difference operators to reveal the fundamental concept of the transform, in both one- and two-dimensional cases, which is extended to cover non-square two-dimensional applications. Efficient modularised implementations are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the weight sequence for a subnormal recursively generated weighted shift on Hilbert space, one approach to the study of classes of operators weaker than subnormal has been to form a backward extension of the shift by prefixing weights to the sequence. We characterize positive quadratic hyponormality and revisit quadratic hyponormality of certain such backward extensions of arbitrary length, generalizing earlier results, and also show that a function apparently introduced as a matter of convenience for quadratic hyponormality actually captures considerable information about positive quadratic hyponormality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present examples of isospectral operators that do not have the same heat content. Several of these examples are planar polygons that are isospectral for the Laplace operator with Dirichlet boundary conditions. These include examples with infinitely many components. Other planar examples have mixed Dirichlet and Neumann boundary conditions. We also consider Schrodinger operators acting in L-2[0,1] with Dirichlet boundary conditions, and show that an abundance of isospectral deformations do not preserve the heat content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider k-hyponormality and n-contractivity (k, n = 1, 2, ...) as "weak subnormalities" for a Hilbert space operator. It is known that k-hyponormality implies 2k-contractivity; we produce some classes of weighted shifts including a parameter for which membership in a certain n-contractive class is equivalent to k-hyponormality. We consider as well some extensions of these results to operators arising as restrictions of these shifts, or from linear combinations of the Berger measures associated with the shifts.