3 resultados para Median Sedimentary Basin

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is the first detailed study of the westernmost portion of the outcrop belt, which extends along the western flank of the Talkeetna Mountains and includes thick, well-exposed outcrops along Willow Creek in the eastern Susitna basin. New sedimentologic, compositional, and geochronologic data were obtained from stratigraphic sections within Arkose Ridge Formation strata at Willow Creek. This data combined with new geologic mapping and geochronologic data from Willow Bench and Kashwitna River Bluff (north of Willow Creek), and from the Government Peak area (east of Willow Creek), help constrain depositional processes and source terranes that provided detritus to the westernmost Arkose Ridge Formation strata.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New geochronologic, geochemical, sedimentologic, and compositional data from the central Wrangell volcanic belt (WVB) document basin development and volcanism linked to subduction of overthickened oceanic crust to the northern Pacific plate margin. The Frederika Formation and overlying Wrangell Lavas comprise >3 km of sedimentary and volcanic strata exposed in the Wrangell Mountains of south-central Alaska (United States). Measured stratigraphic sections and lithofacies analyses document lithofacies associations that reflect deposition in alluvial-fluvial-lacustrine environments routinely influenced by volcanic eruptions. Expansion of intrabasinal volcanic centers prompted progradation of vent-proximal volcanic aprons across basinal environments. Coal deposits, lacustrine strata, and vertical juxtaposition of basinal to proximal lithofacies indicate active basin subsidence that is attributable to heat flow associated with intrabasinal volcanic centers and extension along intrabasinal normal faults. The orientation of intrabasinal normal faults is consistent with transtensional deformation along the Totschunda-Fairweather fault system. Paleocurrents, compositional provenance, and detrital geochronologic ages link sediment accumulation to erosion of active intrabasinal volcanoes and to a lesser extent Mesozoic igneous sources. Geochemical compositions of interbedded lavas are dominantly calc-alkaline, range from basaltic andesite to rhyolite in composition, and share geochemical characteristics with Pliocene-Quaternary phases of the western WVB linked to subduction-related magmatism. The U/Pb ages of tuffs and Ar-40/Ar-39 ages of lavas indicate that basin development and volcanism commenced by 12.5-11.0 Ma and persisted until at least ca. 5.3 Ma. Eastern sections yield older ages (12.5-9.3 Ma) than western sections (9.6-8.3 Ma). Samples from two western sections yield even younger ages of 5.3 Ma. Integration of new and published stratigraphic, geochronologic, and geochemical data from the entire WVB permits a comprehensive interpretation of basin development and volcanism within a regional tectonic context. We propose a model in which diachronous volcanism and transtensional basin development reflect progressive insertion of a thickened oceanic crustal slab of the Yakutat microplate into the arcuate continental margin of southern Alaska coeval with reported changes in plate motions. Oblique northwestward subduction of a thickened oceanic crustal slab during Oligocene to Middle Miocene time produced transtensional basins and volcanism along the eastern edge of the slab along the Duke River fault in Canada and subduction-related volcanism along the northern edge of the slab near the Yukon-Alaska border. Volcanism and basin development migrated progressively northwestward into eastern Alaska during Middle Miocene through Holocene time, concomitant with a northwestward shift in plate convergence direction and subduction collision of progressively thicker crust against the syntaxial plate margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upper Paleocene–Eocene boulder conglomerate, cross-stratified sandstone, and laminated carbonaceous mudstone of the Arkose Ridge Formation exposed in the southern Talkeetna Mountains record fluvial-lacustrine deposition proximal to the volcanic arc in a forearc basin modified by Paleogene spreading ridge subduction beneath southern Alaska. U-Pb ages of detrital zircon grains and modal analyses were obtained from stratigraphic sections spanning the 2,000 m thick Arkose Ridge Formation in order to constrain the lithology, age, and location of sediment sources that provided detritus. Detrital modes from 24 conglomerate beds and 54 sandstone thin sections aredominated by plutonic and volcanic clasts and plagioclase feldspar with minor quartz, schist, hornblende, argillite, and metabasalt. Westernmost sandstone and conglomerate strata contain <5% volcanic clasts whereas easternmost sandstone and conglomerate strata contain 40 to >80% volcanic clasts. Temporally, eastern sandstones andconglomerates exhibit an upsection increase in volcanic detritus from <40 to >80% volcanic clasts. U-Pb ages from >1400 detrital zircons in 15 sandstone samples reveal three main populations: late Paleocene–Eocene (60-48 Ma; 16% of all grains), Late Cretaceous–early Paleocene (85–60 Ma; 62%) and Jurassic–Early Cretaceous (200–100 Ma; 12%). A plot of U/Th vs U-Pb ages shows that >97% of zircons are <200 Ma and>99% of zircons have <10 U/Th ratios, consistent with mainly igneous source terranes. Strata show increased enrichment in late Paleocene–Eocene detrital zircons from <2% in the west to >25% in the east. In eastern sections, this younger age population increases temporally from 0% in the lower 50 m of the section to >40% in samples collected >740 m above the base. Integration of the compositional and detrital geochronologic data suggests: (1) Detritus was eroded mainly from igneous sources exposed directly north of the Arkose Ridge Formation strata, mainly Jurassic–Paleocene plutons and Paleocene–Eocenevolcanic centers. Subordinate metamorphic detritus was eroded from western Mesozoic low-grade metamorphic sources. Subordinate sedimentary detritus was eroded from eastern Mesozoic sedimentary sources. (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time, consistent with construction of adjacent slab-window volcanic centers during Arkose Ridge Formation deposition. (3)Western deposystems transported detritus from Jurassic–Paleocene arc plutons that flank the northwestern basin margin. (4) Metasedimentary strata of the Chugach accretionaryprism, exposed 20-50 km south of the Arkose Ridge Formation, did not contribute abundant detritus. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during exhumation of the volcanic edifice and increasing exposure ofsubvolcanic plutons (Dickinson, 1995; Ingersoll and Eastmond, 2007). In the forearc strata of these conventional models, sandstone modal analyses record progressive increases upsection in quartz and feldspar concomitant with decreases in lithic grains, mainly volcanic lithics. Additionally, as the arc massif denudes through time, theyoungest detrital U-Pb zircon age populations become significantly older than the age of forearc deposition as the arc migrates inboard or ceases magmatism. Westernmost strata of the Arkose Ridge Formation are consistent with this conventional model. However, easternmost strata of the Arkose Ridge Formation contain sandstone modes that record an upsection increase in lithic grains accompanied by a decrease in quartz and feldspar, and detrital zircon age populations that closely match the age of deposition. This deviation from the conventional model is due to the proximity of the easternmost strata to adjacent juvenile volcanic rocks emplaced by slab-window volcanic processes. Provenance data from the Arkose Ridge Formation show that forearc basins modified by spreading ridge subduction may record upsection increases in non-arc, syndepositional volcanic detritusdue to contemporaneous accumulation of thick volcanic sequences at slab-window volcanic centers. This change may occur locally at the same time that other regions of the forearc continue to receive increasing amounts of plutonic detritus as the remnant arc denudes, resulting in complex lateral variations in forearc basin petrofacies and chronofacies.